災害調査報告書

モルタル法面改修工事中の 土砂崩壊災害

1 調査依頼事項

土砂崩壊災害に関する次の事項.

- (1) 土砂崩壊の原因調査
- (2) 崩壊土砂は岩石が風化したものであるか,否か.
- (3) 崩壊した斜面の地盤構成(層理・節理などの不連続面や断層の有無など)とこれらの層の中に土 砂を抱えている層が存在するか,否か.
- (4) 労働安全衛生規則第534条において,崩壊が既存のコンクリートモルタル面が転倒したことが 要因として全体の崩壊となったものか,コンクリートモルタル面の下の礫状の土砂の崩壊によ り全体が崩壊に言ったのかについて特定(推定)したい.
- 2 災害の概要

2.1 災害の種類

土砂崩壊災害

2.2~2.3 略

2.4 事業場名

工事名 :「モルタル吹付け工事」

2.5 災害発生状況

鉄道敷脇地山の崩壊防止のため施工されたコンクリート吹付け面が老朽化したため、それを張り 替える工事を行っていたところ、吹付け面のほぼ全面が崩壊し、作業員 7 名が被災した(内訳;休 業見込み 30 日:2 名、休業見込み 20 日:1 名、休業見込み 3 日:4 名).

既設吹付け面を剥がすため、被災日 22 日前からピックハンマー(小型の削岩機)を使用し、既設吹付け面を小割り(50cm×50cm 程度の正方形に切れ目を入れ、ラスが出現する程度)をしていた.災害 発生前日の同月 25 日までの間に吹付け面施工範囲の約 75%の小割り作業が終了していた.災害発 生当日においては、前日までの作業に引き続いて午前 8:50 から当該作業を開始した.午前 9:00 頃 になり、突然前日まで小割りを済ませた上方と推測される辺りから吹付け面と同時に吹付け面の裏 側に存在した土砂が崩れ落ち、その後、ラス網がつながっていたため吹付け面のほぼ全面が崩壊し、 作業員 7 名も崩壊面とともに滑落した.なお、被災者 7 名の内 3 名は、崩壊直後に親綱が破断して そのまま落下した.残りの4 名は崩落後も一時親綱にぶら下がった状態になったが、親綱を緊結し ていた落石防護柵が崩落により抜け落ちるおそれがあったため、自らロリップを外し、崩落斜面を 滑り降りて避難した.その際、1 名が後から崩落してきた土砂を被り、腰まで埋まる形となった. 崩壊状況を写真-2.1~3 に示す.

3 略

図 2.1 略

写真-2.1 災害発生現場遠影

写真-2.2 災害発生現場近影

写真-2.3 災害発生現場近影

4 災害状況および推定される災害原因

本災害の原因はモルタル吹付け面背後の土砂(経年により岩盤が風化した)が小割り作業により 法面全体が不安定化し崩壊したものと推測される.また,小割り作業の工程にも問題があったと思 われる.これらの要因について,当該災害現場の状況から得られる知見について以下に考察した. さらに,遠心力載荷装置を用いて当該現場をモデル化した小型模型実験を行い,推定した各種要因 が法面安定に与える影響について検討を行った.

4.1 災害現場の状況

当該災害現場は鉄道の開業に先立ち,岩盤の風化・浸食・表面水の浸食を防止するためモルタル 吹付け工により法面保護を行っている.その後,施工されたモルタル上に表面を覆うようなモルタ ル吹付けを行って以降,約 22 年間補修は行われておらず,かなり老朽化していた.なお,施工計 画は現存していないため,当該災害現場の詳細な施工(アンカーの配置等)は不明である.

4.2 岩盤が風化した土砂の存在

崩壊現場から採取されたアンカー の写真を写真-4.1 に示す.アンカーは 長さ 50cm, 直径 2.2cm であり頭や先 端部に赤錆や腐食が確認された.ア ンカーの腐食は,水分が存在してい たことを意味し,表面水が岩盤とモ ルタル吹付け面の間に浸入していた ことを間接的に示唆している.さら に,「小割りすると,防護面の裏側に は土砂があった.これはおそらく 元々岩盤であったものが風化したも のと思われる」という金子組の現場 責任者の証言から,モルタル吹付け 面の背後に岩盤が風化した土砂が存

写真-4.1 崩壊現場から採取された錆びたアンカー (補修の際に打ち込んだものと思われる)

在していたことは確実であろう. モルタル吹付け工は表面の小浮石を固定するとともに,不透水性 材質によって地山を密閉することにより乾燥を防止し,また降雨の浸透を防ぐ(乾湿繰り返し作用 の阻止)ことにより風化を抑制するものであり,モルタル厚さにもよるが抗土圧構造ではない.し かしながら,当該現場のように風化土砂が吹付け面と岩盤の中間に存在する場合には,吹付け面は 風化土砂から相当量の土圧を受けることになる.奥園らはモルタル吹付け工などの密閉型保護工が どの程度風化を抑制できるのかを東名・中央高速道路を中心に追跡調査を行っている¹⁾.図-4.1 に 奥園らがまとめた保護工種別風化量の経時変化を示す.ここで,縦軸の風化帯走時は弾性波探査か

1)奥園誠之:「切取斜面の設計から維持管理まで」, 鹿島出版会

ら表層の風化帯を弾性波の低速度帯で 表現し、その厚さと速度から風化度合い を推定したものである.風化帯走時は以 下の式で表される.

$$t = \frac{d_1}{V_1} + \frac{d_2}{V_2}$$

ただし, t: 風化帯走時(1×10⁻³sec)

d₁,d₂:第一,第二速度層の厚さ(m) V₁,V₂:第一,第二速度層のP波 伝播速度(m/sec)

この図からモルタル吹付け工のような 密閉型保護工は無処理や開放型保護工 と比較すると風化度合いは抑制されて いるが、風化量自体は経年により増加す ることが分かる. 図-4.2 は開放型保護工 である植生法面における風化帯走時と 法勾配を法面の安定状況別に示したも のである. 図中の実線は、奥園が概略目 視で引いた境界線である.非常にばらつ きが大きな結果ではあるが、崩壊した法 面は風化帯走時が大きく勾配が急な領 域に集中していることが分かる. 当該現 場の法面勾配は 60 度程度であり、境界 線が正しければ風化帯走時t=4×10⁻³sec以 上で不安定側に位置することになる.こ の値は図-4.1 から得られる風化度合いか らモルタル吹付け工についても3年程度 で法面が不安定となる可能性があるこ とを示唆している(図-4.1 および 4.2 に示 されている青線参照). 当該現場では, 今

<u>
風化帯走時</u> *i* (×10⁻³sec)
図-4.2 風化度合いと法面勾配による法面安定性

8.0

10.0 20.0

6.0

回の補修工事までモルタル吹付け面の補修工事は行われておらず岩盤はかなり風化が進行していたと考えられる.実際,当該災害発生後に金子組が行ったボーリング調査では鉛直方向に5~6mまで風化した岩石(既に礫状になっている)となっており,モルタル吹付け面と岩盤の間に風化土砂が存在していたことを証明している(ボーリング調査結果は資料1に添付).既往の研究および現地でのボーリング調査等から,法面は吹付け面背後に"風化土砂"という不安定要因が長期的に進行しながら存在していたものと考えられる.このような状態の当該法面に対して,吹付け面のモルタルを小割りするという法面の安定性を著しく損なう作業を行ったため,風化土砂の存在により不安定となっていた法面をますます不安定化し崩壊したものと推測される.

2.0

4.0

4.3 小割り作業手順

「モルタル吹付工事仕様書」において既設モルタル撤去工について以下のように記述されている. 第2章 工事一般

(既設モルタル撤去工)

第18条 既設モルタル撤去工は、次の各号により施工すること.

(1) モルタル撤去は一工程で広範囲に及ぶことの無いように計画し、事前に監督員の承認を受けること.また、撤去する手順は法面上方から下方に向かって順次実施すること.

当該災害発生前までの当該現場での小 割作業の経過状況を図-4.3 に示す.小割 作業は図から明確なように常に下から上 に向かって行われていた.仕様書では既 設モルタル撤去に関して法面上方から下 方に向かって実施すると書かれているが, 小割作業の順序については言及していな い.モルタル吹付け面は一体化すること により岩盤に作用し安定化に寄与してい るが,吹付け面を細かく砕き除去しやす くする小割作業は法面を不安定化する.

また,モルタル吹付け施工から22年経過 している当該現場のような風化土砂が存 在すると想定される現場では、風化土砂

図-4.3 災害発生前日までの小割り作業範囲 (数字は施工日)

が吹付け面に相当量の圧力を与えていたと考えられる.特に法面下方部ではその圧力は大きかった ものと推測され,小割作業を下から行った施工工程については工学的に妥当ではなく,今後行われ る同様の工事では小割り作業の施工工程について考慮する必要があるものと指摘できる.

4.4 遠心力載荷装置による現場再現模型実験

遠心力載荷装置は重力の n 倍の遠 心加速度を付与させることにより実 物の 1/n 縮尺の小型土槽で実地盤の 応力状態を再現できる実験手法であ り,地盤の崩壊現象を再現するには 最適な手法として多くの研究機関に て行われている.特に斜面崩壊や掘 削時の安定性に関して遠心力載荷装 置を用いた模型実験(以下,遠心模 型実験)は多くの実績を有している.

そこで、本件の災害事例について遠心模型実験を行い、風化土砂の存在とモルタル吹付け面の小割

写真 4.2 遠心力載荷装置(NIIS Centrifuge) 表-4.1 遠心力載荷装置主要諸元

項目	内容		
最大遠心加	200		
最大積載	500		
回転半径(m)	最大外径	2.68	
	載荷面	2.31	
	試料容器中心	2.00	
最大回転数(r. p. m.)	中心軸	300	
	駆動軸	1750	
主電動機	容量	直流 150kw	
	回転数	定格 1.750 r. p. m.	
	回転方向	可(逆)	
スリップリング	計測用	80 極	
	動力用	100V2 極	
		(容量 30A)	

りが法面の安定性に与える影響について検討した.

4.4.1 実験概要

使用した遠心力載荷装置は(独)産業安全研究所が所有する NIIS Centrifuge である. これらの諸元 を表-4.1,外観を写真-4.2,概略図を図-4.4 に示す. 当該現場の断面図(図-4.5)を図-4.6 のように一般 化して実験を行った.風化土砂がモルタル吹付け面と岩盤の間に有する当該現場のようなケースで は以下の4箇所の幾何学的条件,物理・力学的条件が法面の安定性に寄与すると考えられる. すな わち,

(1) 法面保護

図-4.5 当該現場の断面図

・ 健全か、老朽化による劣

化・亀裂があるか

- 改修による小割り作業
- (2) 風化土砂
 - 層厚
 - · 力学特性(内部摩擦角等)
- (3) 法面形状
 - のり面の勾配
- (4) 法先部の固定条件
 - 固定
 - 自由

である.本実験ではこれらのうち (3)は60°に固定し,主に(1)と(2) に着目し実験を行った.

図-4.7 に実験概略図を示す.地 山(岩盤)は強固であると仮定し膏 とし,風化土砂のモデル化には気 乾状態の豊浦砂(ps=2.63g/cm³, e_{max}=0.961, e_{min}=0.593)を用いた. また,モルタル吹付け面の吹付け 厚は当該現場の施工計画書が現 存せず,崩壊後の調査でも場所に より異なっていたため,モルタル と密度が比較的近いアクリルと した.実験条件を表-4.2 に示す. 先に示した(1)法面保護について, "健全","小割りされたもの"の

図-4.6 一般化した断面図

図-4.7 実験概略図

			風化土砂層厚 D(cm)		
			3	4	6
送面保護 小割り 健全	固定条件	固定	-	-	0
		自由	0	0	0
	ものほ	固定	-	-	0
	法5	自由	0	0	-

表-4.2 実験条件

^{0:}実験を行ったケース 単位:模型換算

2 種類,(2)風化土砂層厚について,大(模型寸法で 6cm),中(模型寸法で 4cm),小(模型寸法で 3cm) の3 種類を主に検討した.ここで,風化土砂層厚 6cm のケースでは自重で崩壊する可能性があった ため,法先を固定したところ,他のケースとは全く異なる挙動を示した.計測について,風化土砂 の直上に変位計を設置することで実験時の沈下量を,風化層底盤部に土圧計を設置することで法先 付近に加わる圧力変化について計測した.また,風化土砂をモデル化した部分には 5mm 間隔にて ターゲットが設置してあり,それを CCD カメラで撮影することにより変形を逐次把握することが でき,画像解析を行うことで各段階での変位量を計測することが出来る.実験は遠心加速度を徐々 に増加させ,模型が崩壊するまで行った.

4.4.2 実験結果

(1) 風化土砂層厚の違いが法面安定性に与える影響

法面保護が健全な場合,風化土砂層厚の違いが法面安定性に与える影響について検討した.図-4.8 は風化土砂上部に設置した変位計の沈下量と遠心加速度の関係を示したものである.横軸の値が大 きいほど斜面高さがが高くなっていることを意味している.風化土砂層厚 D が厚いケースほど遠心 加速度が低い段階,すなわち斜面高さが低い状態で沈下量が多くなっており,風化土砂層厚の違い は法面安定性に大きく寄与していることが分かる.写真-4.3(1)~(3)は法面保護が健全な場合におけ る風化土砂層厚ごとの変形挙動を示したものである.風化土砂層厚の違いに関係なく,モルタル吹 付け部の法先を中心として吹付け面が回転する変形挙動が見受けられる.また,モルタル吹付け面 に風化土砂から掛かる土圧が作用しモルタル吹付け面が回転変形し,それに伴い上部の土砂がその 変形部分に入り込むことによりモルタル吹付け部にさらなる圧力を与え,モルタル吹付け面の変形 を促進するという"進行性の変形挙動"となっていることが分かる.なお,風化層厚 D=6cm のケ ースでは最終的にモルタル吹付け面が 90°以上まで回転し倒壊した.

図-4.8 風化土砂層厚の違いが法面安定性に与える影響 沈下量~遠心加速度関係(法面保護が健全な場合)

(i) 実験開始前

(iii) 最終的な変形形状

(a) D = 3cm(b) D = 4cm(c) D = 6cm写真-4.3風化土砂層厚の違うケースでの変形挙動(法面保護:健全)

図-4.9 風化土砂層厚の違いが法面安定性に与える影響 風化層底部土圧~遠心加速度関係(法面保護:健全)

図-4.9 は風化層底部に設置した土圧計から得られた土圧と遠心加速度の関係を示したものである. 風化層厚が厚いケースほど風化層底部に大きな土圧が作用されていることが分かる.これは,風化 層厚が厚いほどモルタル吹付け面が早く変形し,それに伴い風化土砂重量が風化層底盤部に作用し たものと考えられる.今回の計測は風化層底部のみであったが,モルタル吹付け面に作用する応力 についても風化層厚が厚いほど大きな圧力が作用することは容易に想像できる.このようなことか ら,風化土砂層厚の違いは法面の安定性に大きく寄与しており,風化層の存在とその層厚について 把握し,対処することは法面安定では重要である.

(2) 改修による小割り作業が法面安定性に与える影響

改修による小割り作業が法面の安定性に与える影響について検討する.図-4.10 は天端沈下量~遠 心加速度関係を法面保護が健全なケースを含めて示したものである.風化土砂層厚 D=3cm のケー ス(△印)では法面保護が健全なケースと比較して4割程度の遠心加速度で崩壊している.同様に 風化土砂層厚 D=4cm では約5割の遠心加速度で崩壊に至っており,風化土砂層厚が同じでも法面 保護の状態により崩壊する遠心加速度レベルが大きく異なることが分かる.これは風化土砂から受 ける土圧をモルタル吹付け全体で受ける法面保護が健全な状態と比較して,小割りされたモルタル 吹付け面は風化土砂から受ける土圧を小割りされた個々の部分で受け,応力の分散をせず個々で変 形するため,早く不安定化してしまうと想像される.写真-4.4(a)~(b)に法面保護が小割りされてい る状態における両ケースの変形挙動を示す.遠心加速度の増加に伴い地表面が徐々に沈下し,11.4G 付近において吹付け面背面近傍の砂が沈下し,それとほぼ同時に法先付近の吹付け面がはらみ出し た(写真-4.4(a)の(3)(4),写真-4.4(b)の(4)(5)).その後,30秒程度の時間をかけて土砂の沈下と法先部の 変形が徐々に大きくなる.モルタル吹付け面自体が不安定となるような変形となった時点で,吹付 け面全体が大きく崩壊した(写真-4.4(a)(b)の(10)~(11)).なお,最終形状ではモルタル吹付け面崩壊 後残っていた土砂が落ちてくる様子が風化土砂層厚 D=4cm のケースでは見られたが,薄い D=3cm のケースでは見られていない.

図-4.10 小割り作業が法面安定性に与える影響 (天端沈下量~遠心加速度関係)

05-28 00106124132

(2) 10G (ほとんど変化は無い) (3)吹付け面付近の土が沈下(11.4G)

(4)法先付近の吹付け面がはらむ(11.4G)

(5)(6)法先部に上部の砂が入りさらにはらむ

05-28 00:01:06:50

05-28 00:05:24:39

(12)最終形状 (10)(11)土砂に引きずられモルタル吹付け面全体が崩壊 写真 4.4(a) 吹付け面が小割りされている場合の崩壊挙動(風化層厚 D=3cm の場合)

(2) 5G (ほとんど変化は無い)

(3)10G(全体的に沈下)

(4)(5)法先がはらみ,同時に天端の土砂が沈下(11.4G)

(6)法先部に上部の砂が入りさらにはらむ

(7)(8)法先のはらみと、土砂の沈下が同時に進行

(9)法先のはらみが限界状態

(12)最終形状 (10)(11)土砂に引きずられモルタル吹付け面全体が崩壊 写真-4.4(b) 吹付け面が小割りされている場合の崩壊挙動(風化層厚 D=4cm の場合)

(風化層底部土圧~遠心加速度関係)

図-4.11 は風化層底部に設置した土圧計から得られた土圧と遠心加速度の関係を法面保護が健全なケースも含めて示したものである.小割りをしたケースの土圧の増加割合は法面保護が健全なケースの風化土砂層厚 D=3cm と 4cm の間に位置しており遠心加速度と土圧の増加比率はほぼ同じ傾向にある.今回の実験では土圧が約 8kPa 程度で風化層厚から受ける土圧を法面保護工であるモルタル吹付け面が保持出来なくなり、崩壊に至っていることが分かる.このことから、小割り作業はモルタル吹付け面を弱体化させるものであり、その作業には慎重さを要する必要があるものと指摘できる.

(3) 法先の固定条件の違いが法面安定性に与える影響

前節までの実験ではモルタル吹付け部分を支える斜面法先が変形に追随する形となっていた.本 節では法先部を固定した実験を行った(図-4.12 参照). 図-4.13 に風化土砂天端沈下量~遠心加速度 関係を示す. 法面保護が健全なケースについて法先の固定条件を比較するとその挙動に非常に大き な違いが見られる. すなわち,法先部が固定されている場合には沈下量も微少であり最大 75G まで 載荷しても崩壊しなかったのに対し,法先部が固定されていない場合には 10G 付近で大きく変形し, 最終的に 40G で倒壊した. 吹付け面が小割りされたケースは法先が固定された条件についてのみ実 験を行ったが法先が固定されていない他の層厚のケースとは全く異なる挙動を示した. 写真-4.5 は 小割りされている状態の変形挙動について示したものである. 法面が崩壊した 16G 直前まで,変形

(風化土砂天端沈下量~遠心加速度関係)

は全く見られず,突然 16G 付近で吹付け面先端のはらみ出しと吹付け面近傍上部の土砂が動きだし 崩壊に至った.その崩壊に要する時間は1秒程度(実地盤換算だと約0.06秒)であり,前兆現象が見 られなかったことから,このような現象が実際に発生した場合には避難することは不可能であろう. 本ケースのように突然崩壊する現象は法先が固定されていない他のケースでは見られなかった.

図-4.14 に法先の固定条件の違いによる風化土砂底部の土圧の変化を示す. 法面保護が健全な場合, 法先の固定条件により土圧の発現に大きな差が出ていることが分かる. 法先が固定されている状態 では変形が抑制されるため,風化土砂層底部に生じる土圧は低い状態を保っていることが分かる. また,小割りされたケースでは 12G 付近から土圧が増加し崩壊とともに健全なケースと同等の位置 まで低下していることが分かる. 12G 付近の吹付け面の挙動はほとんど無いにもかかわらず土圧が 増加していることから,風化土砂内で土圧の再分配等が行われたものと推測できる. 図-4.15 は吹 付け面を小割りした全ケースを示す. 吹付け面の変形挙動は法先の固定条件により大きく異なるの に対し,遠心加速度の増加と土圧の増加は法先の固定条件に関係なくほぼ同じ傾向を示している.

当該現場の法先部がどのような条件となっていたのか不明である.しかしながら、今回の補修工 事での小割り作業範囲(図-4.3 参照)は落石防護柵より上部であることから、法先付近はある程度の 固定条件となっていたと推測され、崩壊の前兆現象は見られず突然崩壊したものと推測される.

(1) 実験前

(2)4G(ほとんど変化は無い)

(3)8G(変化は見られない)

(4)(5)(6)吹付け面先端(〇印)がはらみ,同時に天端の土砂が沈下(16G)

(7)(8)(9)(10)吹付け面とその背後近傍の土砂が滑りだし吹付け面が崩壊(16.5G)

(11)吹付け面倒壊後,風化土砂が崩落 (12)最終形状 写真-4.5 吹付け面が小割りされている場合の崩壊挙動(風化層厚 D=6cm の場合)

図-4.14 法先の固定条件の違いによる風化層底部土圧の変化

図-4.15 法面保護を小割りした場合の風化層底部土圧の変化

5 調査依頼事項に対する回答および再発防止策

5.1 調査依頼事項に対する回答

(1) 土砂崩壊の原因調査

当該災害は、モルタル吹付け面と密着していた岩盤が経年経過により風化し、モルタル吹付け面 に土圧として作用し、モルタル吹付け面を不安定化していたところに、今回の法面補修工事でモル タル吹付け面を小割りする作業を行ったことにより、法面全体がさらに不安定化し、崩壊に至った ものと考えられる.

(2) 崩壊土砂は岩石が風化したものであるか, 否か.

当該災害発生後に当該現場にて行ったボーリング調査からも風化土砂が 5~6m 存在することが 明らかであり、モルタル吹付け面背後に風化した土砂が存在していたと考えられる.

(3) 崩壊した斜面の地盤構成(層理・節理などの不連続面や断層の有無など)とこれらの層の中に土 砂を抱えている層が存在するか,否か.

当該災害現場の地層区分は(独)産業総合技術研究所地質調査総合センター発行の地質図より「古 生層」と推測される.一般に古生層の岩石は、平たい板状か厚めの碁石状に風化する傾向があり、 大きな岩片にはなりにくく、拳大かそれ以下の大きさのものが主で、砂利程度に崩れやすい.当該 災害後の土砂の様子もこれと合致する.

なお、調査によると法面の地盤は次のように分類されている.

- 1. 法面右側:固結度は高いが亀裂の多い軟岩,地質は堆積岩
- 2. 法面中央: 傾斜基盤上の崩積土, 地質は堆積岩の強風化土
- 3. 法面左側: 亀裂の少ない固結土の低い軟岩, 地質は堆積岩
- (4) 労働安全衛生規則第534条において,崩壊が既存のコンクリートモルタル面が転倒したことが 要因として全体の崩壊となったものか,コンクリートモルタル面の下の礫状の土砂の崩壊によ り全体が崩壊に言ったのかについて特定(推定)したい.

災害状況から得られた知見および当該災害現場をモデル化した遠心模型実験結果から,後者だと 考えられる.

5.2 再発防止策

当該災害の原因は先に示したように、モルタル吹付け面と密着していた岩盤の経年経過による風 化した土砂がモルタル吹付け面に土圧として法面を不安定化していたところに、補修工事で小割り 作業をしたことにより法面全体がさらに不安定化し、崩壊したものと考えられる.また、小割りを 行う作業工程(順序)にも問題があったものと推測される.災害状況から得られた知見と当該災害現 場を一般化して行った遠心模型実験結果から、以下に同種災害の再発防止に必要な対策を記述する. 災害状況から得られた知見から、

- 1. 既往の法面の現場調査から,現場の地盤(岩盤)特性や状況に依存するが,モルタル吹付け工 のような密閉型保護工でも風化は起こり,数十年経過した法面では吹付け面裏側が風化して いると想定して作業を行う必要がある.
- 小割り作業の作業工程は上方から行うべきである.なぜならば、風化土砂が存在すれば法面下方のモルタル吹付け面には風化土砂から過大な土圧を受けている可能性があるからである.
 ** ちなみに、当該現場にて剥離・空洞を調査するために行った"遠赤外線映像法"は、本件のようなモルタル吹付け面背後の風化土砂の存在を把握するには不向きである.遠赤外線映像法はあくまでも表面温度情報であり、モルタルの表面温度からモルタル背面側の性状を推察できるモルタル厚さの限界は通常15cm程度とされている.また、全体的に風化した場合や風化層厚が厚い場合にはその温度差が明確にならないなどの問題があるためである.風化度合いを把握する方法としてはモルタル面を打撃してその音で判断するか、吹付け面を一部剥がし目視調査をすることが確実であろう.また、物理探査法も有効な手法の1つである.

遠心模型実験結果から,

- 3. 風化土砂層厚が厚いほど早く不安定となり崩壊した.このようなことから補修作業前の風化 層厚を物理探査などで把握することは重要である.
- 4. 小割りを模擬した実験では健全時の 4~5 割程度の法面高さで崩壊した.また,風化層厚が厚 いケースほど吹付け面が崩壊した上に土砂が崩落しており,当該災害は風化層厚が厚かった ことが指摘できる.
- 5. 小割りを模擬した実験において,風化層厚の違いに関係なく風化層底部に設置した土圧計は 変形が起こる前に圧力が上昇していた.このようなことから,法面底部に土圧センサー等を 埋め込むことは崩壊予防対策のひとつとして考えられる.

当該災害の崩壊要因は、①岩盤の風化、②モルタル吹付け面の小割り作業という2つのキーワー ドにより集約される.これらの要因は元来斜面崩壊災害ではあまり想定されていなかったものであ り工学的な知見も少ないのが現状である.