RIIS-TN-82-4 UDC 621.315.2:62-213

產業安全研究所技術資料

TECHNICAL NOTE OF THE RESEARCH INSTITUTE OF INDUSTRIAL SAFETY

1982

防爆電気機器本体への導線引込方式について

-耐圧単孔パッキン式-

坂主勝弘

労働省産業安全研究所

耐圧単孔パッキン引込方式における耐圧防爆性について — 耐圧単孔パッキン式 —

K. Sakanushi*

Flameproofness of the Single-hole Packing Type for Leading a Conductor into a Flameproof Enclosure

The flameproof packing type is one of the methods used for leading electrical conductors into a flameproof enclosure. In this type, a portion of the wall of flameproof enclosure is provided a packing box, packing, pass-through conductors, washers and packing gland to ensure the flameproofness.

In practice, the above flameproofness is ensured in such a way that when the packing gland is compressed and deformed, sufficient tightness will develop between the surfaces of packing and those of packing box and conductor.

From the viewpoint of flameproofness, the more strongly the packing is compressed, the better it will be; but from the viewpoint of avoiding excessive deformation of the sheath of conductor, the packing shall be compressed rather moderately.

In order to find out appropriate conditions for compression of the packing in terms of relations between the packing compession rate, the deformation of the sheath of conductor and the flameproofness, visual inspection, X-ray test and explosion test for flameproofness have been carried out on a model of a flameproof, single-hole packing type.

As the result, it has been concluded through the tests that appropriate compression rate should be in the range of 5-10 percent to meet the requirement for the flameproofness and the deformation of the sheath of conductor.

* Electrical Research Division.

1. はしがき

耐圧パッキン式引込方式とは、耐圧防爆構造の容器壁 の一部に導線引込部を設けて導線を通じて容器内部に通 電するものである。導線貫通部には、パッキン箱、パッ キン、貫通導線、座金及びパッキングランドが使用され ている。

一般にパッキンには、リング状の合成ゴムを用い、パ ッキングランドの締め付けにより、パッキンを変形させ て、パッキン内外面とパッキン箱内面及び導線の全面に わたって所定の面圧が生じ、耐圧防爆性を保持する方式 である。

この方式では、耐圧防爆性の観点からは、パッキンを 強く圧縮するほうが望ましく、また導線側からは、被覆 の変形をなるべく圧縮を少くなくしたほうがよいので、 この点については矛盾する要素がある。これらについて、 適正な圧縮条件を見出すために、パッキンの圧縮率と導 線の変形との関係及びそれらと耐圧防爆性の関係を、導 線引込部に一つの導線孔をもつ耐圧単孔パッキン式につ いて検討を行ったものである。

近年 工場、事業場などにおいての電気配線は、金属

管配線に比らベケーブル配線が多く行なわれる傾向にな りつつある。

防爆構造の電気機器の場合もその機器内部配線及び外 部配線にケーブルを用いたものが数多く見かけるように なった。

耐圧防爆構造の容器壁貫通部に導線としてケーブルを 用いて、耐圧防爆性を保持する方式には、次の2通りが ある。

図1. 耐圧単孔パッキン式引込方式の構造 (ボルト締込方式)

図2. 耐圧多孔パッキン式引込方式の構造 (ねじ込方式)

図3 コールドフロー現象を生じたケーブル

- (1) 耐圧単孔パッキン式引込方式
 - 導線引込部に一つの導線孔をもつパッキンを用いる方法(図1参照)
- (2) 耐圧多孔パッキン式引込方式
 導線引込部に複数個の導線孔をもつパッキンを
 用いる方法(図2参照)
- 2.1 圧縮過剰による導線のコールドフロー現象

耐圧単孔パッキン式においては、はしがきに記述した とおり、耐圧防爆性の観点からは、パッキンを強く圧縮 するほうがよいが、必要以上に強く圧縮すると、パッキ ングランド(外部からの力)からの力がパッキンと貫通 導線に加わり、外力を取り去っても変形が回復しない状 態になる。これをコールドフロー現象という。この現象 が発生するとパッキンと接していた部分の導線がやせほ そり、絶縁体の厚さがうすくなり、貫通導線の絶縁性の 低下の原因となるおそれになる。

図3は、コールドフロー現象を生じたケーブルを示し たものである。

このコールドフロー現象は、外部からの過大な力が、 長時間にわたって加わったことによることが多いが、 これ以外には、パッキン硬度及び導線の被覆の硬度の違 うものを組合せることによっても、コールドフロー現象 の発生に差が生じてくる。

防爆構造の容器壁貫通部に用いられているパッキンの 材料は、ほとんどのものが合成ゴムで、一般にその性能 は 硬さ:55~65Hs [TISK 6301(加硫ゴム物理試験方

法) による]

引張強さ:120kgf/cm 〔11.77MPa〕

伸び: 450%以上

範囲に入るものが多く用いられている。

これに対し、貫通導線として用いられている導線の種類 と被覆硬度は、おおよそ、つぎのとおりである。

ゴム絶縁クロロプレンキャブタイヤケーブル、 50~65Hs 口出線用ブチルゴム絶縁クロロプレンシース電線、50~65Hs 口出線架橋ポリエチレン電線、 95~100 Hs

2.2 ケーブルの仕上り外径について

ケーブルのJIS規格には、次の項目とその内容が定められている。

線心数、導体、絶縁体厚さ、シース厚さ、仕上外径、 導体抵抗、試験電圧、絶縁抵抗及び参考事項。

耐圧単孔パッキン式に用いるケーブルは、上記項目の うち、特にケーブルの仕上り外径が、所定の寸法値内に あることが、防爆性を維持できる重要な要素でもある。

しかるに、JIS 規格では、この仕上り外径寸法約○○mm (例えば600Vポリエチレンケーブル、公称断面積8mm² 2心ケーブルでは、仕上り外径約16.0mm)と規定してい る。ケーブルの外径寸法に約のついた理由としては、導 体、絶縁体厚さ、シース厚さ及び多心ケーブルの場合は 線心の幾何的な積上げなどケーブルの構成要素と製造上の要因を含んだものと考えられる。

したがってJIS 規格でいっているケーブルの外径の寸 法値は製造上又は管理上の目安を示したものにすぎない。 ちなみに、現在一般品として製造されている、ケーブ ルの仕上り外径寸法がJIS 値に対して、どの位の差で製 作されているかをケーブルメーカ6社の製品について調 べてみたところ、次のような結果が得られた。

表1 ケーブル仕上外径調査結果(抜粋)

IIS仕上外径(mm)	JIS仕上外径との実測寸法比率(%)
9.0~11.0	$- \begin{array}{c} 6.5 \sim +7.0 \\ (-1.0 \sim +7.0) \end{array}$
14.5~16.5	$-5.0 \sim +5.0 \ (-2.0 \sim +1.0)$
19.0~23.0	$\begin{array}{r} -5.5 \ \sim \ +2.0 \\ (-1.0 \ \sim \ +1.0) \end{array}$
29. 0~30. 0	$\begin{array}{r} -4.0 \ \sim \ +1.5 \\ (-1.5 \ \sim \ +1.5) \end{array}$

注1.実測寸法比率は調査対象6社のもののバラツキの 最小及び最大を示したものである。

2.()内は調査対象6社のうち1社に限定したものを示したものである。

3. 実験と目的

以上、記述のように耐圧単孔パッキン式方式により耐 圧防爆構造の容器壁に導線を貫通する場合の防爆性の維 持については、パッキンの圧縮率、パッキン性能とケー ブル被覆硬度及びケーブル仕上り外径寸法の誤差などが 防爆性に直接的に関係してい。

そこで今回は、パッキンの圧縮率と導線の変形との関 係及びそれらと耐圧防爆性の関係について検討するため に、次のような実験を行った。

3.1 目視実験

3.2 X線透過実験

3.3 爆発実験。

各実験にしばしば用いられる用語に、"パッキンの有効 圧縮率"がある、この用語の意味は次のように統一して 考えることにした。

パッキンの有効圧縮率とは、パッキンの長さ方向の変 形率を圧縮率と称する。

パッキンを圧縮する過程でパッキンの内・外面がパッ キン箱内面及び導線の全面にわたって接した状態[これ ら相互の"すきま"が零となる(図5参照)]のパッキン長 さ方向の変化率を有効圧締率と称する。この場合、ゴム パッキンはパッキングランドで締付けた時、この締付圧 力に対し、体積変化が無いものとしている。

なお、パッキンの圧縮過程を図示すれば次のとおりで ある。

図4パッキングランド締付け前図5有効圧縮率0%+

図6 有効圧縮率Y%

(1) 図4はパッキン箱に所定の方法で導線とパッキン を設けたものである。この時、パッキンはまだ圧縮され ていない。

(2) 図5はパッキン(パッキン長さℓ))をパッキング ランドで締め付けた時パッキンが締付圧力に対し体積変 化がなく、あらゆる方向に一様に変形してパッキンと導 線及びパッキン箱との間のすきまが零になった状態であ る。

有効圧縮率0%の時のパッキン長さピィは次のようになる。

1

$$\frac{\pi (D^2 - d^2)}{4} \cdot \ell_1 = \frac{\pi (D_1^2 - d_1^2)}{4} \cdot \ell$$
$$\therefore \ell_1' = \frac{D^2 - d^2}{D_1^2 - d_1^2} \cdot \ell_1$$

(3) 図6は、図5の有効圧縮率0%を基準にして、さらに圧縮した時の状態である。この場合、有効圧縮率Y は次式により求められる。

$$Y = \frac{\ell'_{1} - \ell_{2}}{\ell'_{1}} \times 100 \quad (\%)$$

3.1 目視実験

(1) 目 的

導線がパッキンの圧縮によって、かなり変形した状態 になっていることがしばしば確認されている。

したがって、導線及びパッキンが圧縮率によって、ど のような形状変化するか、又バッキンと導線の寸法、材 質、座金寸法の違によってどの様に形状変化するのかを 透明なパッキン箱とパッキンを用いて目視によって観察 することにした。

(2) 試料

実験に使用した導線の種類は、2種ゴム絶縁クロロプ レンキャブタイヤケーブル(2RNCT)、口出用600V ブチ ルゴム絶縁クロロプレンシース電線(LBN)、口出線 600V架橋ポリエチレン絶縁電線(LC)及び600Vビ ニル絶縁電線(IV)で心数及び被覆硬度の異なったも のを使用した。パッキンは導線の変形状態がわかるように 透明なもので、一般に使用されているパッキンと同等の 硬度を持ったオレフィンゴム相当品(エチレンプロピレ ンの共重合体)を使用した。座金はSPH製で、内径は 導線仕上り外径に応じたものを選定した。それぞれの詳 細寸法及び組合せは表2の通りである。

(3) 実験器具

図7は実験に使用した透明のパッキン箱による締付器 具、図8は締付状態を示したものである。

(4) 実験方法

透明なパッキン箱を用いて、パッキン圧縮率に応じた 導線及びパッキンの形状変化を調査した。パッキンの圧 縮率設定に際しては、その都度有効圧縮率に見合う理論 値の算定を行ない、パッキングランドのツバ部をパッキ ン箱の間にスペーサーを挿入して締付け、その圧縮過程 に応じて目視観測、写真により記録を行った。

(5) 目視観察における変形状態の表現方法

目視観察での導線及びパッキンの変形状態の表現を図 9及び図10に示す。

(6) 実験結果

圧縮率による導線形状変化とパッキンのはみ出しについての目視観察の結果は表3の通りである。

表3の圧縮実験結果をシンボルによる表示で示すと表 4の通りである。

inter dis	導			線	パ	ッ	キン	座	金	(1)
武 科 No.	種類	心 数	公 称 断面積 (mm [*])	仕上外径 d ₁ 〔実測値〕 (mm)	外径D (mm)	内径 d (mm)	圧縮前のパッ キンの長さ ℓ ₁ (mm)	外径 (mm)	内径d₂ (mm)	厚 さ (mm)
1	2 RNCT	単 心	6 0	16.9~17.2	29.5	18.0	29.8	28.6 29.4	18.5	2.3
2	"	"	"	"	30.0	18.0	15.0	4 4	11 11	"
3	"	11	"	4	29. 5	18.0	30.0	29.0 座金	22.0 なし	4
4	"	"	"	"	29.4	17.5	30.2	29.0	19.9	2.3
5	"	"	4	"	29.4	17.5	30.3	· //	24.0	"
6	. 4	3 心	8	17.0~17.2	29.5	18.0	30.0	28.6 29.4	18.5	4 11
7	LBN	単 心	60	20.3~21.0	29.4	21.5	29.9	29.0 ″	24.0	
8	"	"	"	"	30.0	22.0	22. 0	11 11	4 11	"
9	"	"	"	"	29.6	21.9	30.0	4		4 4
10	LC	"	80	19.4~19.7	29.3	21.3	29.8		<i>"</i>	<i>"</i>
11	"	"	4	"	29.4	21.8	30.2	4 11	21.3	*
12	"	"	"	"	29.2	22.0	29.9	"	24.0	<i>"</i>
13	"	"	50	18.2~18.7	29.4	18.0	30.0	"	<i>"</i>	"
14	"	"	"	"	29.4	18.0	30.0	"	19.0	<i>"</i>
15	ĿV	"	125	18.6~18.9	29.4	18.0	30.0	"	24.0	"
16	"	"	"	"	29.3	21.8	30.2	"	21.3	"
17	"	"	"	"	29.3	22.0	30.0	"	24.0	"
18	"	"	8 0	15.5	29.2	17.8	30.6	4	17.3	11
19	"	"	"	"	29.4	17.8	30.5	"	21.3	"

表2 試料の種類と寸法

注(1) 座金寸法欄中上段はパッキングランド側、下段はパッキン箱側の座金寸法を示す。

備考 1. パッキン材質と性能

材質 オレフィンゴム相当品(エチレンプロピレンの共重合体) 性能 硬さ :55~65HS [JIS K 6301 (加硫ゴム物理試験方法)による]

引張強さ: 120kgf/cm 〔11.77MPa〕

伸び : 450%以上

2. 導線の種類と被覆硬度

2 RNCT: 50~ 65 Hs LBN: 50~ 65 % L C: 95~100 % I V: 80~ 90 %

図7 締 付 器 具

•

この個所が細く見えるのは、 パッキン箱と導線の間に空 気層がある為、レンズ効果 によるものである。

図8 締 付 状 態

図9 導線の変形状態の表現

表3 圧縮によるパッキンはみ出し結果

王縮率	¥ <u>5</u> %				10%			15%			30%	
目 親 部 分	導線形状 変化	パッキン はみ出し	その他	導線形状 変化	パッキン はみ出し	その他	導線形状 変化	パッキン はみ出し	その他	導線形状 変化	パッキン はみ出し	その他
1	たいこ形	なし		たいこ形	はみ出し 有り 座金半分 程度		たいこ形	はみ出し 大 座金がか ぶさる	くびれ大 導線ふく れ上る			
2	たいこ形	はみ出し 大 座金がか ぶさる		たいこ形	はみ出し 大 座金がか ぶさる							
3	たいこ形	はみ出し 有り 座金内径 部分	はみ出し は締付反 対側のみ	たいこ形	はみ出し 大 大巾には み出る	はみ出し は締付反 対側のみ	たいこ形	はみ出し 大 大巾には み出る	はみ出し は締付反 対側のみ			
4	ややたい こ形	はみ出し やや有り		たいこ形	はみ出し 有り	導線塑性 変形小						
5	ややたい こ形	はみ出し やや有り		たいこ形	はみ出し 有り	導線塑性 変形なし						
6	たいこ形	締付反対 側にはみ 出し有り 座金半分		たいこ形	はみ出し 有り 座金半分 程度		たいこ形	はみ出し 有り 座金がか ぶさる				
7	たいこ形	はみ出し 有り 座金半分 程度	コーン形 の変形く びれほぼ 一方のみ	たいこ形	はみ出し 有り 5%より 増加	コーン形の 変形くびれ 両側にあり	たいこ形	はみ出し 有り 10%とほ ぼ同じ				
8	たいこ形	はみ出し 有り 座金半分 程度	コーン形 の変形 くびれ一 方が大	たいこ形	はみ出し 有り 5%より 増加	コーン形 の変形 くびれ一 方が大	たいこ形	はみ出し 有り 10%とほ ぼ同じ	コーン形 変形 くびれ一 方が大			
9	コーン形 締付側小	はみ出し なし		たいこ形	はみ出し やや有り	導線塑性 変形小						
10	ほぼ直線 形 密着	はみ出し なし		5 %にほ ぼ同じ	5 %にほ ぼ同じ		ほぼ直線 形	はみ出し 少々有り	くびれの きざし有 り	導線が偏 心 直線形	はみ出し 大 締付反対 側	パッキン が甚しく 押し出さ れる
11	コーン形 締付側小	はみ出し なし		直線形	はみ出し なし	導線塑性 変形なし						
12	コーン形 締付側小	はみ出し なし		直線形	はみ出し やや有り	導線塑性 変形なし						
13	殆んど変 形なし	はみ出し なし	空気層が 入る	直線形	若天はみ 出し有り	空気層な し	10%の場 合とほぼ 同じ	10%の場 合とほぼ 同じ	若干の導 線の変形 有りと思 われる	ややたい こ形のき ざし有り	はみ出し 大	
14	ほぼ直線 形	はみ出し なし	導線変形 コーン形 締付側径 小	ややたい こ形のき ざし有り	はみ出し ほぼなし		たいこ形 締付側が 径が小	はみ出し のきざし 有り	締付側導 線のくび れかなり 大	たいこ形	はみ出し 有り	導線被ふ く伸びる
15	ほぼ直線 形 密着	はみ出し なし		ややたい こ形のき ざし有り	はみ出し 少々有り	くびれな し	ややたい こ形	はみ出し 少々有り		たいこ形	はみ出し 大 締付反対 側	くびれ少 少有りビ ニル被る く伸びる
16	コーン形 締付側小	はみ出し なし		ややたい こ形 直線に近 い	はみ出し やや有り	導線塑性 変形なし						
17	コーン形 締付側小	はみ出し なし		コーン形 ややたい こ形	はみ出し やや有り	導線塑性 変形なし						
18	導線やや ふくらむ	はみ出し なし		たいこ形	はみ出し 有り	導線塑性 変形大						
19	導線やや ふくらむ	はみ出し やや有り		たいこ形	はみ出し 有り	導線塑性 変形小						

表4 パッキンはみ出し結果・シンボル表示

_															1					
	試料 有効 圧縮率	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	5 %	ф		ф	φ	Ф	Ф			ф	ф	ф	ф		¢		<u>ф</u>	Д	φ	Ф
	10%	Φ	Ф	ф	Φ	Φ	ф	(4	ф	ф	ф	Ф		ф	ф	Ф	Ф	Φ	Φ
	15%	Ф		Ф			Ф.	Ф	¢		¢			╓	φ	Ф				
-	30%													Ф	ф	Ф				

(注) 上表のシンボルの意味は下表の通り。

シンボル					ц Ц	ф	φ	ф	ф	Ф	Ф	Φ	ф	4	Φ	4	Ф
導線形状	直線形	直線形	直線形	直線形 くびれ有 り	直線形	たいこ形	たいこ形	たいこ形	たいこ形	たいこ形 くびれ有 り	たいこ形	たいこ形 くびれ有 り	コーン形	コーン形 直線形	たいこ形 コーン形	たいこ形 コーン形 くびれ片 側に有り	たいこ形 コーン形 くびれ両 側に有り
パッキンはみ出し 有 無、 形 状	はみ出し なし	若干はみ 出し有り	はみ出し 有り	はみ出し 有り	はみ出し 大	はみ出し なし	はみ出し 片側有り	はみ出し 片側大	はみ出し 有り	はみ出し 大	はみ出し 大	はみ出し 有り	はみ出し なし	はみ出し なし	はみ出し 有り	はみ出し 有り	はみ出し 有り
															•		

防爆電気機器本体への導線引込方式

. 9

図10 パッキンの変形状態の表現

(7) 考察

パッキンと導線は、その容器としてのパッキン箱内に おいて、パッキングランドで締付けた時にかなり変形す ることは、各種実際的事例から明らかであったが、パッ キンの圧縮過程でこれらの変形がパッキンと導線の接合 部のどの部分がどのように変形するか不明であった。と ころが、本実験によって定性的ではあるが、パッキンと 導線の形状変化の状況がその進行過程を含めて、かなり 詳細にわたって目視による確認ができたわけである。

本実験から観察して、次のようなことがいえる。

導線の変形は、圧縮率の上昇と共に直線形からコーン 形を経てたいこ形に変形し、その変形量は締付側(パッ キングランド側)が大で、導線のコーン形の径小部、導 線のくびれが大なるところはいづれも締付側にあらわれ た。

一方パッキンは、有効圧縮率が10%前後になると、か なり座金側ははみ出すことが目視で確認された。

また、パッキンの長さの長短にかかわらず、くびれ方 はほぼ同じで、更に圧縮率を増加していってもパッキン の肉厚や長さに関係なく、パッキン内径と導線径との差 が大きいものでも形状変化の過程は変らなかった。

また、座金の内径の違いによっても、導線の変形やく びれ、パッキンの座金側へのはみだしにかなり影響する ことが判明した。

以上の結果から、導線とパッキンの様々な変形状態を

目視で確かめることができ、その変形過程によっておお よそ5~10%有効圧縮率による変形ならば許容しうると いう判断ができた。

有効圧縮率、導線の種類及びその他組合せ条件を変え て、変形状態を観察した代表的な観察写真を図11に示す。

3.2 X線透過実験

パッキンの圧縮過程における導線の変形状態は、定性 的には、目視実験により確認することができた。

しかし、この目視実験は、パッキンと導線の変形状態 を定性的に確認するのみで、定量的把握を行うことはで きなかった。

X線透過法により、パッキンの圧縮による導線及びパッキンの変形を定量的に把握することを試みた。

(2) 試料

実験に使用した導線の種類は、口出用600Vクロロス ルホン化ポリエチレン絶縁電線(ハイパロン電線、LHH) 600V難燃性架橋ポリエチレン絶縁電線(MLFC)、口出 用600Vけい素ゴム絶縁ガラス編組電線(LKGB)で、被 覆硬度の異なったものを使用した。パッキンは、一般に 使用されているパッキンと同等硬度を持ったオレフィン ゴム相当品を使用した。座金はSPHC製で、内径は導 線仕上外径に応じたものを選定した。それぞれの詳細寸 法及び組合せは表5の通りである。

(3) 実験器具

締付器具の形状寸法は図12に示す。

(1) (2)(3) 単心 8 0 mm² 単心 50 mm² 単心 60 mm^2 LC 2 RNCT LC 導線 摘 パッキン 外径=29.3 内径=21.3 長さ=29.8 外径=29.5 内径=18.0 長さ=30.0 外径=29.4 内径=18.0 長さ=30.0 (mm) 要 座金 外径=29.0 内径=19.0 厚さ= 2.3 外径=29.0 内径=22.0 厚さ= 2.3 外径=29.0 内径=24.0 厚さ= 2.3 (mm) 5 % 有 効 圧 10縮 % 率 (Y) 15 % 1. 写真に於いて左側はパッキングランド、右側はパッキン箱。 備 2. パッキン寸法は圧縮前の寸法。 考 3. 写真(1)は座金をパッキングランド側のみに使用。

図11 変形状態の代表的な観察写真 (Y=5~15%)

表5 試料の種類と寸法

	導			線)	শ ্য	キン	座	金	A	座	金	В	パッキン
試料	種 類	心数	公称 断面積	仕上外径d1 (実測値)	外径D	内径d	圧縮前の パッキンの 長さ l1	外径	内径 d2	厚さ	外径	内径 d2	厚さ	箱内径 D1
No.			(mm [*])	(mm) (2)	. (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
20	ГНН	単心	60	16.9(17.0)	29.4	17.8	30. 2	29.53	23.1	2.6	25. 53	23. 1	2.4	30.05
21	MLFC(3)	"	80	17.1(17.2)	29.3	17.8	30.0	29.0	18.7	2. 3	29.0	18.7	2.3	30. 05
22	LKGB(4)	"	80	17.4(17.5)	29.3	17.8	30.0	29.0	18.7	2.3	29.0	18.7	2.3	30.05

注(2) 括弧内寸法は導線外径に鉛箔を巻いた後の寸法

である。

(3) この導線は、特定メーカの製品記号である。

(4) ガラス編組は、とり除いて使用した。

備考1. パッキン材質と性能

- 材質 オレフィンゴム相当品 (エチレンプロ ピレンの共重合体)
- 性能 硬 さ:55~65Hs (JIS K 6301による)

引張強さ: 120kgf/cm[11.77MPa]

伸 び: 450%以上

2. 導線の種類と被覆硬度

LHH : 65~85 Hs MLFC : 80 Hs

LKGB : 40~70 Hs

この器具に表5に示す導線を挿入し、締付けた状態の ものを被写体として、X線透過装置により撮影した。

(4) 実験方法

締付器具に試料を挿入し、4本のボルトによって、均
ーに締付け、パッキンの有効圧縮率(Y)が0、3、5、
7、10及び15%となる各圧縮過程において、X線透過写
真を作り、写真上で寸法を測定し、この数値をもとに導
線及びパッキンの変形を計算により求めた。

(a) X 線透過法

レントゲン装置を用いて撮影を行った。

レントゲン装置仕様

60KVP 25mAs

(b) 被写体のコントラスト強化

導線外径の寸法をフイルム上に写し出すため、導線外 周に厚さ0.03mmの鉛箔を巻き、コントラスト強化をはか った。

なお使用したレントゲンは、照射エネルギが小さく、 導線の心線(銅)と導線外径とを同時に写し出すことは困 難なため、今回の実験は導線外径のみの写真とした。

(c)寸法補正

フイルム上の寸法を真の値にするため、座金外径を正 確に測定しその値を基準に寸法を補正した。

- (5) 実験結果
- (a) 導線の変形状態

実験結果のまとめを表6、図13及び図14に示す。又、 締付器具に導線を締付けた状態のX線透過写真の代表的 なものを図15及び図16に示す。このうち、導線締付部分 のX線透過拡大写真としてLHH口出線のものを図17 MLFC口出線の場合は図18 LKGBの場合を図19 に示した。

(b) パッキンの変形状態

パッキンを圧縮した場合のパッキンはみ出し量を実験 資料をもとに計算により求めた。

図12 締 付 器 具

.

- 14 -

	3	尊	線	有効圧約	宿率(%)	11からの	圧縮後の	最小導線	導線変形	導線変形率	絶縁体厚さ
料 No.	種類	外径d1(5) (mm)	絶縁体厚 さt (mm)	触感(6)	理論値	圧縮率 (%)	パリィン 長さ (mm)	d 3mm (mm)	重 d1—d3mm (mm)	$\frac{d_1 - d_{3mm}}{d_1} \times 100$	$\frac{d_1 - d_{3}mm}{2t} \times 100$
				0	0	10. 9	26.9	17.10	-	—	
				3	3	13.6	26.1	16.83	0.17	1.00	3.4
	LHH	17.0	9 5	5	5	15. 2	25.6	16.76	0.24	1.41	4.8
20	60mm ²	17.0	2.5	7	7	17.2	25.0	16. 48	0.52	3.06	10. 4
				10	10	19.9	24. 2	16.28	0.72	4. 24	14. 4
				15	15	24. 2	22.9	15.56	1.44	8.47	28.8
1.0				0	-1.5	9.7	27.1	17.07		· · ·	· _ ·
				3	1.5	12.3	26. 3	16.80	0.4	2. 33	. 13.3
01	MLFC	17.0	1 5	5	3.7	14.3	25.7	16.53	0.67	3.90	22. 3
21	80mm ²	11.2	1.5	7	5.6	16.0	25.2	16. 26	0.94	5.47	, 31. 3
				10	8.6	18.7	24.4	15. 91	1.29	7.50	43.0
				15	13.9	23. 3	23.0	15.38	1.82	10. 58	60.7
· .				0	-1.8	7.7	27.7	17.62	—	—	_
				3	1.1	10.3	26.9	17.07	0.43	2.46	9. 38
00	LKGB	17 5		5	3.3	12.3	26. 3	16.36	1.14	6. 51	24. 78
22	80mm ²	11.5	2.3	7	5.1	14.0	25.8	15.86	1.64	9. 37	35.65
				10	8.5	17.0	24.9	15.04	2.46	14.06	53. 49
				15	13.6	21.7	23.5	14.87	2.63	15.03	57.17

- 15 -

表6 導線の変形状態

注(5) 導線外径は導線外周にコントラスト強化のための鉛箔を巻き付け後の寸法である。

(6) 触感により0%を決め、それを基準に計算して、3、5、7、10、15%とした。

図14 有効圧縮率-絶縁体厚さ変形率

図17 LHHの変形状態

図18 MLFCの変形状態

図18 MLFCの変形状態

有効圧縮率15%

図19 LKGBの変形状態

$$\pi$$
 , 2 , 2

 $V = \frac{\pi}{4} (d_1^2 - d_3^2) \ell_2 \cdots (3)$

座金側のはみ出し量(S.)は

 $S = W - V = \frac{\pi}{4} \{ (D_1^2 - d_1^2) \ell_1' - (D_1^2 - d_3^2) \ell_2 \} \dots (2)$

備考 式中のd3の値は、導線締付後の導線外径の平均値とする。

図20 導線締付状態図

(ii) 計算に必要な諸元

表7 計算に必要な諸元

導線の種類	パッキン外径D (mm)	パッキン内径 d (mm)	圧縮前のパッ キンの長さℓ ₁ (mm)	導線外径 d ₁ (mm)	有効圧縮率 0% の時のパッキンの長さ ℓ'_1	パッキン箱内径 D ₁
LHH 60mm ²	29.4	17.8	30.2	17.0	26.9	30.05
MLFC 80mm ²	29.3	17.8	30	17.2	27.1	30.05
LKGB 80 mm ²	29.3	17.8	30	17.5	27.7	30.05

(c) 計算結果

計算結果を表8及び図21に示す。

表8 パッキンの変形状態

試料	導線の	有効圧縮	d 3	l ₂	$\ell_1'-\ell_2$	パッキン	全はみ出	導線側は み出し量	座金側は み出し量	$\frac{V}{W} \times 100$	$\frac{S}{W} \times 100$
No.	種類	率 Y (%)	(mm)	(mm)	(mm)	1 本資 (mm ³)	し重 W (mm ³)	V (mm ³)	S (mm ³)	(%)	(%)
	· ·	3	16. 93	26.1	0.8	12980.05	385, 59	48.66	336. 93	13	87
	ТНН	5	16.82	25.6	1.3	"	626. 59	122.34	504.25	20	80
20		7	16.70	25.0	1.9	"	925. 78	198. 41	717.37	22	78
	60 mm ²	10	16. 51	24. 2	2.7	"	1301.37	311.93	989.44	24	76
		15	16.04	22.9	4.0	"	1927.96	570.19	1357.77	30	70
· · ·		3	16.93	26. 3	0.8	12755.86	381.30	190.25	191.05	50	50
	MIEC	5	16.79	25.7	1.4	4	667.27	281.15	386.12	42	58
21		7	16.64	25. 2	1.9	"	905. 58	374.88	530.70	41	59
	80 mm ²	10	16.22	24.4	2.7	"	1286. 88	627.32	659.56	49	51
	e Souther a	15	15.86	23.0	4.1	"	1954.15	799. 84	1154.31	41	59
		3	17.35	26. 9	0.8	12755.86	374.76	110. 39	264.37	29	71
	IKCB	5	16.95	26.3	1.4	"	655.83	391.18	264.65	60	40
22	LKGD	7	16. 58	25.8	1.9	"	890.06	635.00	255.06	71	.29
	80 mm ²	10	16.06	24.9	2.8	"	1311.66	944. 61	367.05	72	28
		15	15.73	23. 5	4.2	"	1967.49	1085.03	882.46	55	45
	I	<u> </u>		L		·	L	1	1	l	1

(実線=座金側はみ出し量 $\frac{S}{W} \times 100(\%)$ { 「点線=導線側はみ出し量 $\frac{V}{W} \times 100(\%)$

o = L H H (65~85Hs 座金内径23.1mm) △ = M L F C (80Hs 座金内径18.7mm) x = L K G B (40~70Hs 座金内径18.7mm)

→はみ出し量(%)

100

90

LHĤ

(6) 考察

X線写真による実験では圧縮に伴う導線の変⁻ 的に測定することができた。

(a) 導線被覆硬度の影響

導線の変形は被覆の材質によってその程度¹

なる。(表6、図13及び図14参照)、すなわち導線がLK GBの場合、けい素ゴムが柔かいため、導線の変形量が 他の2種に比べ約1.5~2倍、絶縁体厚さ変形率も絶縁 体厚さがMLFCに比べ、厚いにもかかわらず変形率は 同程度である。

この結果から導線の被覆硬度はもちろん、パッキンの 硬度によっても、導線の変形量が変ってくる。

(b) 座金内径の影響

パッキンは、締付けても体積不変の原則から、本実験 においても圧縮した部分は、導線の変形と座金側へのは み出しとなってあらわれた。

LHHの場合、パッキンの座金側へのはみ出し量が大で あるのは、座金内径の違いによる影響である。

実験に用いた座金内径はLHHの場合 **23.1**mm、MLFC 及びLKGBの場合は **\$ 18.7**mmであった。

この現象からわかるように、座金側へのはみ出しが大 であるということは、導線側へのはみ出しが少なく、導 線変形量が少ないことになる。

以上、導線の変形状態を定量的に測定した結果、導線 の変形量は導線及びパッキンの硬度、座金の内径により 大きく影響を受けることが確認した。

3.3 爆発実験

(1) 目 的

耐圧パッキン式引込方式とは、はしがきに記述したと おり、パッキングランドを締め付けることにより、パッ キン内外面とパッキン箱内面及び導線の全面にわたって 所定の面圧が生し、これらの箇所から火炎が逸走するの を防止する。したがって、パッキンの圧縮状態、導線の 寸法及びパッキンの寸法などの変化に伴う火炎の逸走の 確認が必要である、この方式は、金属接合面のように、 実際の機器にスキの奥行及びスキを設置した状態で確認 することは容易でない、そこで本実験では、目視実験、 X線透過実験に引続いて、導線引込方式の締付方法及び 火炎の逸走特性について調査した。

(2) 試料

実験に使用した導線の種類は口出用600Vけい素ゴム絶縁ガラス編組(LKGB)口出用600Vブチルゴム絶縁クロロプレンシース電線(LBN)及び口出用600Vクロロプレン絶縁電線(LN)である。

(3) 実験装置の概要

(a)爆発実験装置のフロシートは図22に示す。

実験ガスを実験容器内に所定の圧力になるまで送入したのちネオントランス(入力100V出力15Kv 20mA)を

用いて点火する。点火プラグには、ノイズをさけるため にサブレッサを装着している。

(b)爆発圧力測定装置

圧力の検出には抵抗線歪式圧力変換器(容量30kgf/cm)

図22 爆発実験装置フローシート

を用い、動的歪測定器により増幅し、直記式電磁オシロ

グラフ(ガルバ固有振動数1000Hz)により記録した。

なお、記録計の最高直線記録速度は750mm/sである。

(c)圧力較正

圧力較正は分銅標準圧力計により2kgf/cm⁴毎に12kgf/cm⁴まで静圧で較正した。

(d)実験用ガス

実験に使用したガスは一般に耐圧防爆構造電気機器の 爆発試験に使用している水素-空気混合気とした。

水素-空気混合気の爆発特性は図23に示すとおりである。

図23 水素-空気混合気の濃度別の実験的 セーフ・ギャップ

実験に使用した水素-空気混合気は21(20.5~21)、 30(30~31.5)及び50(46.8~50)Vol%である。

ガス濃度50Vol%のものは比較的防爆機器数の多い爆 発等級2の機器に対して使用する。ガス濃度21Vol%は 電気火花で最も点火しやすい濃度である。ガス濃度、 30Vol%は爆発圧力が最も大きくなる濃度である。 可燃性ガス・蒸気と空気との混合気の爆発圧力は他の 条件が一定ならば濃度によって変化し、ある濃度で最大 値に達する。この濃度は一般には当量濃度よりやや高目 である。

(e)実験容器

容器の材質はSS41で、その内容積は約8.4ℓである。容

器には圧力変換器、混合ガス給排気用ねじ穴及び点火プ ラグ取付用のねじ加工がされている。接合面にはアスベ スト製パッキンを装着し、実験時にガスが洩れるのを防 いでいる。

実験容器の構造は図24、及び外観図は図25に示す。又 図26は実験容器を爆発試験槽に設置したところを示して いる。

図25 実験容器外観写真

図26 爆発試験槽と実験容器 表9 実験の組合せ要素

導線の種類	パッキンの材質	有効圧縮率	ガ ス 濃 度	初	試料No.	試験結果 の参照
LKGB, LBN	オレフィンゴム	0, 3, 5 %	47Vol <i>%</i>	0 kgf/cm²	23~28	表11
LKGB, LBN	"	0 %	47Vol %	1.0 1.5 kgf/cm²	"	表12
LKGB	クロロプレンゴム	0 %	50, 30, 21 Vol%	0 kgf/cmで行ない火炎逸走 しない時は0.7kgf/cm	29	表13
LBN	"	0 %	"	"	30	表14
LN	4	0 %	"	1	31	表15

(4) 実験方法

(a)爆発実験は表9に示す各要素の組合せで行い、火 炎の逸走の有無を調らべた。実験を行うに際し、導線は 実験容器内のクランプで固定し、更に、導線内部を通じ て火炎の逸走するのを防止するために、導線端末をエポ キシ樹脂系接着剤で端末処理した。なおLKGBはガラ ス編組を取除いて使用した。

(b)爆発実験に使用した試験の種類と寸法については 表10に示すとおりである。

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	<u>بر</u>	鋽	線			パ	ッキ	ン	(mm)	座金	А. В	(8)	(7)
料	112	仕上乡	忄径dım	m (9)	外径	内径	圧縮前 の長さ	有効圧縮 率0%時	有効圧縮 率Y%時			(mm)	有効上縮率
No.	種類	X方向	Y方向	平均值	D	d	l 1	の長さ <i>ℓ</i> ₁	の長さ <i>ℓ</i> 2	外径	内住 d ₂	長さ	Y (%)
23	LKGB	14.7	15.6	15.15	29. 5	17.4	17.5	14.75		29. 6	17.2	2. 3	0.45
24		14. 8	15.0	14.90	29.5	17.1	17.4	14. 81	14.37	29.6	17.2	2.3	0.90 (3)
25	"	15.0	15. 5	15.10	29.6	17.8	18.1	15.00	14. 25	29.6	17.2	2. 3	5.20 (5)
26	LBN	16.6	16.5	16.50	29.7	17.6	17.6	17.60	—	29.6	18.7	2.3	0.49 (0)
27		16.6	16.4	16.50	29.4	17.5	17.2	15. 22	14.76	29.6	18.7	2.3	3.22 (3)
28	"	16. 5	16.9	16.70	29.6	17.8	17.8	15. 92	15.12	29.6	18.7	2.3	4.76 (5)
29	LKGB	15.7	14. 8	15.25	29.4	17.9	8.8	7. 12	_	29.6	17.2	2.3	0(0)
30	LBN	17.8	17.3	17.55	29.4	17.8	9.0	8. 26		29.6	18.7	2.3	0 (0)
31	LN	16.3	16.0	16.15	29.4	17.8	9.0	7.63	_	29.6	18.7	2.3	0.029 (0)

表10 試料の種類と寸法

注(7) 有効圧縮率は0,3,5%を目標としたが多少相異が生じた。()内は目標値を示す。

(8) 座金A, Bには同一寸法のものを使用した。

(9) 有効圧縮率の算出にあたってはパッキン箱、座金、パッキン及び導線の寸法が構成要素であるが、 そのうちパッキン箱、座金及びパッキンは比較的容易に所定の公差を得ることが出来る。しかし、 導線は種類が多く、構成も雑多で、さらに、その導線径は所定の値を得ることが大変因難である。 したがって有効圧縮率の算定にあたっては大変な障害となる。そこで本実験では図27に示す方法で 導線寸法を算出した。

備考1. パッキンの材質と性能

 (1) オレフィンゴム相当品
 (性能)
 硬き:55~65Hs (JISに6301による)
 引張強き:120kgf/cm (11.77MPa)
 伸び:450%以上

導線とパッキンが接触する箇所 の18mmの範囲で任意に測定し、 計算にはその平均値を採用した。

図27 導線外径寸法測定箇所

(2) クロロプレンゴム

(性能)

- 硬度 : 60Hs
- 引張強さ:160kgf/cm
- 伸び :480%以上
- 2. 導線の種類と被覆硬度

- (1) LKGB: 40~70Hs
- (2) LBN : 50~65Hs
- (3) L N : 50~65Hs

(5) 実験結果

有効圧縮率、導線、及び実験ガスの濃度と圧力条件な どの組合せを変えて実験した結果は表11~15のとおりで あった。

表11 実験結果

The product of the product	導線の	有効圧	実験回数		1	2	3	4	5	6	7	8	9	10	11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		相华			17 0										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			ッス優度 (Vol%)	P 5 分	47.0										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1/1	41.0										
M M <td></td> <td>0%</td> <td>初 圧 (kgf/cm)</td> <td></td> <td>0</td> <td>0. 63</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		0%	初 圧 (kgf/cm)		0	0. 63									
LKGB $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$															
$ LKGB = \begin{bmatrix} \pi & \pi$			爆発圧力(kgf/cm)		5.5	10.13	10.13	10.03	10. 03	10.03	10.13	10.03	10.20	10.00	10.13
LKGB 3 % $(Vo1\%)$ $%$ 48.0 \rightarrow 47.0 \rightarrow a \rightarrow \rightarrow 3% $\overline{M} \to (kgf/cnl)$ 0 0.70 a a a a \rightarrow $\mathbb{\mathbbb{\mathbb{\mathbbb{\mathbb{\mathbb{\mathbb$			 ガス濃度	内	48.0		→	47.0							
LKGB 3 % 初 圧 (kgf/cml) 0 0.70 - <td></td> <td></td> <td>(Vol%)</td> <td>外</td> <td>48.0</td> <td></td> <td>→</td> <td>47.0</td> <td></td> <td></td> <td></td> <td></td> <td>· · · · ·</td> <td></td> <td>→</td>			(Vol%)	外	48.0		→	47.0					· · · · ·		→
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IKCB	20%	初 正 (leaf/and)		0	0.70									
加工業度 内 47.0 10.00 10.05 10.10 10.00 10.	LKGD	370	が)注(kg1/cll)		0	0.70									
$\vec{\pi} \ \mathcal{A} \ \begin{tabular}{c c c c c c c } \hline \vec{n} \ & 47.1 \\ \hline (Vo1\%) \ & \hline p \ & 47.1 \\ \hline p \ & 47.1 \\ \hline p \ & 46.8 \\ \hline p \ & 47.0 \\ \hline p \ & 47.0 \\ \hline p \ & 47.0 \\ \hline p \ & 46.8 \\ \hline p \ & 47.3 \\ \hline p \ & 47.2 \\ \hline p \ & 46.8 \\ \hline p \ & 47.3 \\ \hline p \ & 47.2 \\ \hline p \ & 47.2 \\ \hline p \ & 46.8 \\ \hline p \ & 47.3 \\ \hline p \ & 47.2 \\ \hline p \ & 47.4 \\ \hline$			爆発圧力(kgf/cm)		5.4	10.00	10.05	10.10	10.00	10.05	10.10	10.00	10.00	10.05	10.00
$\vec{\pi}$ $\vec{\chi}$ $\ddot{\vec{k}}$ $\vec{\vec{k}}$ $\vec{\mu}$ 47.1 $\vec{\mu}$ 46.8 $\vec{\mu}$ 47.0 5% $\vec{\pi}$ $\vec{\kappa}$ $(\text{Vol}\%)$ $\vec{\mu}$ 47.1 $\vec{\mu}$ 46.8 $\vec{\mu}$ 47.0 5% $\vec{\pi}$ $\vec{\kappa}$ (kgf/cnl) 0 0.70 $\vec{\mu}$ 46.8 $\vec{\mu}$ 47.0 $\vec{\pi}$ $\vec{\kappa}$ (kgf/cnl) 0 0.70 $\vec{\mu}$ μ															
$(Vol\%)$ $%$ 47.1 \rightarrow 46.8 \rightarrow 47.0 \rightarrow 5% \overline{N} E (kgf/cm) 0 0.70 \rightarrow 0.65 0.70 \rightarrow $\ensuremath{\mathbb{R}}\ensuremath{\mathbb{R}}\ensuremath{\mathbb{R}}\ensuremath{\mathbb{I}}\ensuremath{\mathbb{C}}\ensuremath{\mathbb{I}}\e$			ガス濃度	内	47.1				46.8			→	47.0		
5% 初 圧 (kgf/cml) 0 0.70 → 0.65 0.70 → 爆発圧力(kgf/cml) 5.4 10.05 10.10 10.05 10.00 10.00 10.05 10.10 10.00 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.00 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.05 10.00 10.05 10.10 10.00 10.10 10.00 10.10 10.00 10.10 10.00 10.10 10.00 10.10 10.00 10.10 10.00 10.10 10.00 10.	-		(Vol%)	外	47.1				46.8			>	47.0		
爆発圧力(kgf/cml) 5.4 10.05 10.10 10.05 10.00 10.05 10.00 10.05 10.00 10.05 10.00 10.05 10.00 10.05 10.00 10.05 10.00 10.05 10.00 10.05 10.00 10.05 10.00 10.05 10.00 10.05 10.00 10.05 10.00 10.05 10.00 10.05 10.00		5%	初 圧 (kgf/cm)		0	0.70						0.65	0.70		
爆発圧力(kgf/cml) 5.4 10.05 10.10 10.05 10.00 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.05 10.10 10.00 10.10 10.05 10.10 10.00 10.10 10.05 10.10 10.00 10.10 10.05 10.10 10.00 10.10 10.05 10.10 10.00 10.10 10.05 10.05 10.10 10.05 10.05 10.05 10.10 10.05 10.05 10.05 10.10 10.05															
ガス濃度 (Vol%) 内46.8 47.3 47.2 0% ガス濃度 (Vol%) 外46.8 +47.3 +47.2 0% 初圧(kgf/cml) 0 0.6 +0.63 +0.65 0.65 爆発圧力(kgf/cml) 5.6 10.00 10.10 10.00 10.10 10.00 10.03 10.03 10.00 10.00 ガス濃度 内47.0 +47.6 +47.6 +47.6 +47.6 +47.6 +47.6			爆発圧力(kgf/cml)		5.4	10. 05	10. 10	10. 05	10.05	10.00	10.00	10.05	10. 10	10.00	10.10
$M \times k_{\mathbb{R}} / k_{\mathbb{Q}}$ $P = 40.0$ $P = 41.0$ $P = 41.0$ $(Vol\%)$ $M = 46.8$ $A = 47.3$ $A = 47.2$ 0% $M = (kgf/cm)$ 0 0.6 0.63 0.65 0.63 $M = (kgf/cm)$ 5.6 10.00 10.10 10.00 10.03 10.03 10.00 10.00 $M = 47.6$				Ь	46.8		`	47 3							47 2
0% 初 圧 (kgf/cml) 0 0.6 0.63 0.65 0.63 爆発圧力(kgf/cml) 5.6 10.00 10.00 10.10 10.00 10.03 10.03 10.00 10.00 ガ ス 濃 廃 内 47.0 46.8 47.6 47.6 47.6 47.6			リース 展 及 (Vol%)	外	46.8			47.3							47 2
0% 初 圧 (kgf/cm) 0 0.6 0.63 0.63 0.65 0.63 爆発圧力(kgf/cm) 5.6 10.00 10.10 10.00 10.10 10.00 10.03 10.03 10.00 10.0				171											
爆発圧力(kgf/cm) 5.6 10.00 10.00 10.10 10.00 10.10 10.00 10.03 10.03 10.00 10.0		0%	初 圧 (kgf/cm)		0	0.6					0.63			0.65	0.63
爆発圧力(kg1/cm) 5.6 10.00 10.00 10.10 10.00 10.00 10.03 10.03 10.00 10.00 ガ ス 濃 度 内 47.0 → 46.8 → 47.6 →															
		-	爆発圧力(kgf/cm)		5.6	10.00	10.00	10.10	10.00	10.10	10.00	10. 03	10.03	10.00	10.00
			ガス濃度	内	47.0		→	46.8				→	47.6		
$(Vol\%) \not \uparrow 47.0 \longrightarrow 46.8 \longrightarrow 47.6 \longrightarrow$			(Vol%)	外	47.0			46.8		·····		→	47.6		
	IBN	3.0%			0	0.05							0.70		
1.557(-5.76) + (kg1/cm) = 0 = 0.65	LDN	570	約 庄 (kgi/cm)		0	0.05							0.70		
爆發压力(kaf (ari) 5.6 10.15 10.00 10.15 10.05 10.00 10.05 10.00 10.10 10.00 10.00			爆発圧力(kaf/and)		5.6	10 15	10.00	10 15	10.05	10 00	10.05	10.00	10 10	10 00	10 00
			/**70/11./J (Ng1/01/		5.0	10.15	10.00	10.15	10.03	10.00	10.00	10.00	10.10	10.00	10.00
ガス濃度 内 47.0 → 47.5 →			ガス濃度	内	47.0								→	47.5	
(Vol%) 外 47.0 → 47.5 →			(Vol%)	外	47.0	-	7.5							47.5	
5 % $\ddagger 1$ \mp (kef/cm ²) 0 0.675 0.7 0.725 0.70		5%	初 圧 (kgf/cm²)		0	0.675	0.7	0.725	0.70						
			,,, , <u> </u>												
爆発圧力(kgf/cm) 5.45 10.18 10.00 10.00 10.10 10.10 10.00			爆発圧力(kgf/cm)		5.45	10.18	10.00	10.00	10. 10	10.10	10.00	10.00	10.00	10.00	10. 00

LKGB、LBNともに、いずれの場合も火炎の逸走はなかった。

表12 実験結果

有効圧縮率	実験回数	1	2	3	4	5	
		内	47		·		
	刀入底度(101%)	外	47				
	初 庄 (kgf/cm²)	1.0					
	爆発圧力(kgf/cm)		12. 2	11.8	11.9	12.0	11.9
0.44	火炎逸走の有無		無				-
0%	ドラ 唐 (11 10/)	内	47	46.8			
-	刀入底度(V01%)	外	47	46.8			
	初 圧(Vol%)	1.5					
	爆発圧力(kgf/cml)		14. 4	15.5	14.5	14.7	14.7
	火炎逸走の有無		無				
		内	47.4		→	47.8	47.8
2	カス 凄度(Vol%)	外	47.4		>	47.8	47.8
	初 圧 (kgf/cm)		1.0				
	爆発圧力(kgf/cm)		12.9	12.9	12.3	12.9	12.9
	火炎逸走の有無		無				
0 %		内	47.8			47.0	47.0
	リヘ <u></u> (V 01 %)	外	47.8			47.0	47.0
	初 圧 (kgf/cm)		1.5				
	爆発圧力(kgf/cm)	15.5	15.5	15. 2	15.7	15.5	
	火炎逸走の有無		無				
	6 ⅔	有効圧縮率 実験回数 ガス濃度(Vol%) 初 圧 (kgf/cml) 爆発圧力 (kgf/cml) パス濃度 (Vol%) 初 圧 (Vol%) 初 圧 (Vol%) 水炎逸走の有無 パス濃度 (Vol%) 初 圧 (kgf/cml) 火炎逸走の有無 パス濃度 (Vol%) 初 圧 (kgf/cml) 火炎逸走の有無 ガス濃度 (Vol%) 初 圧 (kgf/cml) 水炎逸走の有無 ガス濃度 (Vol%) 初 圧 (kgf/cml) 水炎逸走の有無 ガス濃度 (Vol%) 初 圧 (kgf/cml) 水炎逸走の有無 ガス濃度 (Vol%) 初 圧 (kgf/cml) 水気逸走の有無 ガス濃度 (Vol%) 初 圧 (kgf/cml) 水気逸走の有無 ガス濃度 (Vol%) 初 圧 (kgf/cml) 水気逸走の有無	有効圧縮率 実験回数 ガス濃度 (Vol%) 内 初 圧 (kgf/cml) 水 爆発圧力 (kgf/cml) 内 パス濃度 (Vol%) 内 外 初 圧 (Vol%) 小 外 初 圧 (kgf/cml) 内 パス濃度 (Vol%) 内 外 初 圧 (kgf/cml) パス濃度 (Vol%) 内 パス濃度 (Vol%) 内 小 水 小 ア 初 圧 (kgf/cml) 小 小 小 小 東 パス濃度 (Vol%) 内 小 小 小 東 パス濃度 (Vol%) 内 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 <td>有効圧縮率 実験回数 内 47 ガス濃度 (Vol%) 内 47 初 圧 (kgf/cm) 1.0 爆発圧力 (kgf/cm) 12.2 火炎逸走の有無 無 ガス濃度 (Vol%) 内 47 ガス濃度 (Vol%) 内 47 ガス濃度 (Vol%) 内 47 ガス濃度 (Vol%) 内 47 初 圧 (Vol%) 1.5 1.5 爆発圧力 (kgf/cm) 14.4 パス濃度 (Vol%) 1.5 小次炎逸走の有無 無 ガス濃度 (Vol%) 1.0 爆発圧力 (kgf/cm) 1.5 水炎逸走の有無 無 ガス濃度 (Vol%) 内 47.8 外 ガス濃度 (Vol%) 内 1.5 爆発圧力 (kgf/c</td> <td>有効圧縮率 実験回数 1 2 ガス濃度(Vol%) 内 47 </td> <td>有効圧縮率 実験回数 1 2 3 ガス濃度 (Vol%) 内 47 </td> <td>有効圧縮率 実験回教 1 2 3 4 ガス濃度(Vol%) 内 47 初 圧 (kgf/cdl) 小 1.0 爆発圧力(kgf/cdl) 1 12.2 11.8 11.9 12.0 火炎逸走の有無 二 12.2 11.8 11.9 12.0 火炎逸走の有無 パ 47 46.8 ガス濃度(Vol%) 内 47 46.8 小ガス濃度(Vol%) 内 47 46.8 パガス濃度(Vol%) 内 47 46.8 パボス濃度(Vol%) 内 47 46.8 パボス濃度(Vol%) カ 47.4 パボス濃度(Vol%) 方 47.4 </td>	有効圧縮率 実験回数 内 47 ガス濃度 (Vol%) 内 47 初 圧 (kgf/cm) 1.0 爆発圧力 (kgf/cm) 12.2 火炎逸走の有無 無 ガス濃度 (Vol%) 内 47 ガス濃度 (Vol%) 内 47 ガス濃度 (Vol%) 内 47 ガス濃度 (Vol%) 内 47 初 圧 (Vol%) 1.5 1.5 爆発圧力 (kgf/cm) 14.4 パス濃度 (Vol%) 1.5 小次炎逸走の有無 無 ガス濃度 (Vol%) 1.0 爆発圧力 (kgf/cm) 1.5 水炎逸走の有無 無 ガス濃度 (Vol%) 内 47.8 外 ガス濃度 (Vol%) 内 1.5 爆発圧力 (kgf/c	有効圧縮率 実験回数 1 2 ガス濃度(Vol%) 内 47	有効圧縮率 実験回数 1 2 3 ガス濃度 (Vol%) 内 47	有効圧縮率 実験回教 1 2 3 4 ガス濃度(Vol%) 内 47 初 圧 (kgf/cdl) 小 1.0 爆発圧力(kgf/cdl) 1 12.2 11.8 11.9 12.0 火炎逸走の有無 二 12.2 11.8 11.9 12.0 火炎逸走の有無 パ 47 46.8 ガス濃度(Vol%) 内 47 46.8 小ガス濃度(Vol%) 内 47 46.8 パガス濃度(Vol%) 内 47 46.8 パボス濃度(Vol%) 内 47 46.8 パボス濃度(Vol%) カ 47.4 パボス濃度(Vol%) 方 47.4

この実験は初圧を1.0と1.5kgf/cmに上げ行ったが、いずれの場合も火炎の逸走はなかった。

表13 実験結果

導線の 種類	有効圧 縮率	実験回数		1	2	3	4	5	6	7	* 8	9	10	11	
		ガス濃度	内	50			49		→	49			>		
		(Vol%)	外	50		>	49			49			→	-	
		初 圧 (kgf/cm)		0									>		
		爆発圧力(kgf/cm)		5.7		,									
		火炎逸走の有無		無											
		ガ ス 濃 度	内	50									→		
		(Vol%)	外	50									→		
		初 圧 (kgf/cml)		0.7											
		爆発圧力(kgf/cm)		10.5	10.6	10.5	10.4	10.4	10.6	10.6	10.4	10.4	10.4		
		火炎逸走の有無		無									->		
		ガス濃度	内	31										→	
		(Vol%)	外	31											
		初 圧 (kgf/cm)		0											
		爆発圧力(kgf/cm)		7.1	7.0	6.9	6.8	7.0	6.9	6.9	6.9	6.8	6.9	7.1	
IKCB	0%	火炎逸走の有無		有	有	無	無	有	無						
LKGD	0 70	ガ ス 濃 度	内	31		->	31.5				→	30.5	→		
		(Vol%)	外	31		->	31.5				->	30.5	→		
		初 圧 (kgf/cm)		0.7									+		
		爆発圧力(kgf/cm)		12.8	12.3	12.3	12.4	11.9	12.2	12.2	11.8	12.7	12.6		
		火炎逸走の有無		有	有	無	有	無		有	無	有	>		
		ガス濃度	内	21									→		
		(Vol%)	外	21									+		
		初 圧 (kgf/cm)		0											
			爆発圧力(kgf/cm)		5.4						_	5.5	5.5	5.4	
		火炎逸走の有無		無									-		
		 ガス濃度	内	21									>		
		(Vol%)	外	21							-		→		
		初 圧 (kgf/cm)		0.7									>		
		爆発圧力(kgf/cm)		10.0	10.3	10.4	10.2	10.0	9.8	10.0	9.9	9.8	9.8		
		火炎逸走の有無		無	有	無									

ガス濃度50Vol%では初圧0及び0.7kgf/cmともに火炎の逸走はなかった。

ガス濃度21Vol%では初圧0.7kgf/cmで一度だけ火炎の逸走をしている。

ガス濃度31Vol%では初圧に関係なく火炎の逸走をしている。

表14 実験結果

導線の 種類	有効圧 縮率	実験回数		1	2	3	4	5	6	7	8	9	10	11
		ガス濃度	内	50										\rightarrow
	an an taon an	(Vol%)	外	50										
		初 圧(kgf/cm)		0										
ی ا بر ۱۹۹۹ بر	1	爆発圧力(kgf/cm)		5.9		→	6.1	6.0	5.9					>
n An an an an		火炎逸走の有無		無										→
		ガス濃度	内	50										
		(Vol%)	外	50										
2 2 2 2 4	*. *.	初 圧 (kgf/cm)		0.7						-			→	
n de George		爆発圧力(kgf/cm)		11.2	10.4	10.9	10.9	10.7	10.4	10. 3	10. 2	10.1	8.8	
ng sa Santara Santara	• • • • • • •	火炎逸走の有無		無			-					→	有	
		ガ ス 濃 度	内	31					 -	↑	30			
		(Vol%)	外	31						→	30		→	
	* .	初 圧 (kgf/cm)		0							•		→ .	
LBN	0 %	爆発圧力(kgf/cm)		7.0	7.0	6.8	6.7	6.7	6.8	6.7	7.1	7.0	6.9	
		火炎逸走の有無		有				無	有				→	
н. у. н. (ガス濃度	内	21				→	20.5					
		(Vol%)	外	21					20.5				-	
		初 圧 (kgf/cm)		0										
		爆発圧力(kgf/c㎡)		6.6	6.6	6.5			6.3	6. 2			6.7	
	· · ·	火炎逸走の有無		無									→	
	1	ガス濃度	内	21					· ·				→	
	-	(Vol%)	外	21								[→	
		初 圧 (kgf/cm)		0.7									-	
		爆発圧力(kgf/cm)		11.7	12.0	11.7	12.1	10.3	10.3	10.2	9.7	9.8	10.9	
		火炎逸走の有無		無	有		->	無					→	

ガス濃度50Vol%では初圧0kgf/cmでは火炎の逸走はしなかったが初圧0.7kgf/cm²では一度火炎の逸走をしている。 ガス濃度21Vol%では初圧0kgf/cmでは火炎の逸走はしなかったが初圧0.7kgf/m³では三度連続して火炎の逸走をし いる。

ガス濃度31Vol%では初圧0kgf/cmでも火炎の逸走をしている。

— 31 —

表15 実 験 結 果

導線の 種類	有効圧 縮率	実験回数	1	2	3	4	5	6	7	8	9	10	11
		ガス濃度 内	49			50						→	
		(Vol%) 外	49		→ .	50						→	
		初 圧 (kgf/cm)	0									→	
		爆発圧力(kgf/cm)	5.6	5.6	5.7	5.6	5.5	5.6			->	5.5	
		火炎逸走の有無	無									→	
		ガス濃度内	50									→	
		(Vol%) 9	50									→	ļ
		初 圧 (kgf/cm)	0.7										
		爆発圧力(kgf/cm)	10.2	10.1	10.1	10.0	9.9	10.2	10.5	10.5	10.5	10.4	
		火炎逸走の有無 	無									→	
		ガス濃度	31									→	<u> </u>
		(Vol%) 9	31									→	ļ
		初 圧 (kgf/cm)	0									>	
		爆発圧力(kgf/cm)	6.9	6.8								6.7	
LN	0%	火炎逸走の有無	無									>	
	0,0	ガス濃度内	31									→	ļ
		(Vol%) 外	31									→	ļ
		初 圧 (kgf/cm)	0.7									>	
:		爆発圧力(kgf/cm)		13.1	12.3	12.6	12.1	11.9	12.2	12.3	12.1	12. 2	
		火炎逸走の有無	有	有	無	有	有	無	有			→	
		ガス濃度内	21										
		(Vol%) 外	21										
		初 圧 (kgf/cm)	0										
		爆発圧力(kgf/cm)	5.3								5.1	5.3	5. 1
		火炎逸走の有無	無							-			-
		ガス濃度内	21									>	
		(Vol%) 外	· 21									>	
		初	0.7										
		爆発圧力(kgf/cm)	10.4	10.3	10.3	10. 2	10.3	10.2	10.1	10.0	10.1	11.2	
		火炎逸走の有無	無									-	

ガス濃度50Vol%では初圧0及び0.7kgf/cmともに火炎の逸走はなかった。

ガス濃度21Vol%では初圧0及び0.7kgf/cmともに火炎の逸走はなかった。

ガス濃度31Vol%では初圧0kgf/cmでは火炎の逸走はしなかったが、初圧0.7kgf/cmでは火炎の逸走をしている

(5) 考察

(a) 実験用ガスについて

当初、実験に使用したガスは21、30及び50Vol%の水 素-空気混合気としたが後半は30Vol%のみとした。

30 Vol %を使用することにしたのは水素-空気の混合 気では当量濃度(29.6 Vol%)よりもいくらか濃い目のガ ス濃度において最も火炎逸走しやすいことが、すでにわ かっているためである。

実験結果に示すとおり、何回も繰返して行っているが すべての実験が全く同一のガス濃度で行うことは不可能 である。しかし図23より明らかなように29~33 Voℓ%の 間では、ほぼ同じ結果が期待できそうなので、実験ガス の濃度は31±1 Voℓ%ときめた。

(b)有効圧縮率0%について

所定の計算要領により、有効圧縮率0%を算出し、その算出に従って設定された資料で爆発実験を行った結果 各データが示すとおりに初圧0kgf/cm³、ガス濃度31Vol% では火炎が逸走している。

これは、計算により有効圧縮率を算出し、それに従っ て資料を設定したとしても、導線とパッキンの間が必ら ずしも理想状態にはなりいず、ある程度のスキが生じて いるためと思われる。

(c) パッキンの選定に当って、

パッキン箱の密封するためには、パッキン硬度、長さ と肉厚及びパッキンの寸法がパッキン箱内の密封度に影 響をおよぼす、これらの諸条件が不適切の場合、爆発実 験の結果いくつかのパッキンが実験ガスの燃焼熱により 焼損しているものがあった。

これらのことから、パッキンの選定に当っては、パッ キンの物理的、化学的、温度的影響、相対する導線の被 覆の材質、パッキングランドの締め付要領、パッキン箱 内面の仕上程度等を考慮する必要がある。

(d)ケーブルの選定に当って

パッキン箱内を密封するためには、上記のパッキン選 定要件のほか、ケーブルについてもつぎの要件を十分に 留意する必要がある。

ケーブルの断面の形状は、円形で表面に凸凹の少いも のであること、ついで、ケーブルの線心間のすきまの少 いもの(例えば充実型のケーブル)および同一規格のケ ーブルで、その仕上り外径寸法のバラツキが小さく、ま たそのバラツキが一定の範囲内にあるものであること。

ケーブルメーカによれば、ケーブルの仕上り外径寸法 については、購入仕様を決めるときに、仕上り外径の寸 法の公差は、ある程度内であれば、十分にその要求に応 じることは容易であるといわれているので選定に際して は、この点についても考慮する必要がある。

4. あとがき

耐圧パッキン式引込方式においては、有効圧縮率が導 線引込部の耐圧防爆性ーすなわち、導線引込部が容器の 一部として構成されているため重要な役割をもっている

本来、導線は、その電気的性能を維持するために、全 く圧縮しない状態で使用するのが好ましい使い方である といえる。しかし耐圧防爆性の見地からみて、導線とパ ッキンとの圧縮度がその防爆性に大きな影響を及ぼすの で、全く圧縮しない状態で使用することは許されない。

従来、ややもすると圧縮度を重視するあまり、必要以 上に締め付けるきらいがあったが、導線を余り締めつけ ずに耐圧防爆性が維持できる状態が適切な有効圧縮率と いえるのである。

今回の目視実験、X線透過実験及び爆発試験より、適 切な有効圧縮率は5~10%の範囲であれば耐圧防爆性及 びパッキンと導線の変形状態に対して十分満足し得るも のと判断することができる。

特に有効圧縮率10%は、導線変形に対する導線の正常 性を維持するために必要な上限の値の目安の値と考えて いる。

また、今回の爆発実験によれば、有効圧縮率が2~3% でも耐圧防爆性を十分に満足できることが判明したが、

実際に使用される導線の仕上外径寸法、断面の形状、 (円形の程度)被覆の硬度、座金の内径などの組合せが多 種にわたっていることなどから、安全性を加味して下限 値は5%にすべきと考えた。

耐圧パッキン式引込方式には、パッキン硬度、長さ、 肉厚、寸法ならびにケーブル被覆硬度、仕上り外径及び パッキン箱の精度など圧縮率とのかかわり合いを持ちな がら耐圧防爆性保持のための要素が多い。

しかしながら、設計当初から、上記各要素の選択を正 しく行えば、導線の電気的性能を低下せずに、耐圧防爆 性を維持することは容易であることが明らかとなった。

耐圧パッキン式引込方式を新たに設計、製作される 諸兄に対し、このレポートがわずかでも参考になれば幸 甚である。

最後に、本実験を実施するにあたり(社)日本電機工 業会、導線引込方式技術専門委員会ならび(社)産業安全 技術協会の永石治喜氏には種々御協力を頂きましたこと をここに記して、感謝の意を表します。

(1983. 1.11 受付)

参考文献

鶴見、松田 水素濃度とセーセ・ギャップの関係に ついての研究 産業安全研究所報告 Vol. 15 No.1 Mosch. 1967

— 33 —

昭和 58 年 3	月 10 日	発行
	発行所	労働省産業安全研究所
	〒108	東京都港区芝5丁目35番1号 電 話(03) 453-8441(代)
		印刷所祥 栄 堂

產業安全研究所技術指針 RIIS-TR-82-4

UDC 621, 351, 2:62-213

耐圧単孔式パッキン式引込方式における耐圧防爆性について。

坂 主 勝 弘

労働省産業安全技術資料 RIIS - TN- 82-4 (1982)

耐圧パッキン式引込方式は、耐圧防爆構造の容器壁の一部に導線引込部(パッキン、座金など)を設けて、導線を通じて容器内部に通電するものである。 研究の目的は、パッキンの圧縮率と導線の変形との関係及びそれらと耐圧防爆性

との関係について検討した。

(表15, 図25, 参1)

UDC 621, 315, 2: 62-213

Flameproofness of the Single-hole Packing Type for Leading a Conductor into a Flameproof Enclosure. by K. Sakanushi Technical Note of the Research Institute of Industrial Safety RIIS-TN-82-4 (1982)

The flameproof packing type is one of the methods used for leading electrical conductor into a flameproof enclosure. In this type, a portion of the wall of flameproof enclosure is provided a packing box, washers, etc. to ensure the flameproofness.

The objective of this research is to find out appropriate conditions for compression of the packing in terms of relations between flameproofness, the packing compression rate and the deformation of the sheath of conductor.

(15 Tables, 25 Figs, 1 Ref.)