產業安全研究所技術資料

TECHNICAL NOTE OF THE RESEARCH INSTITUTE OF INDUSTRIAL SAFETY

1977

プレスの「安全距離」に関する研究

ーモデル作業における手の速度と
ストップタイムの現場測定について一

深谷潔杉本旭佐藤吉信

労働省産業安全研究所

プレスの「安全距離」に関する研究

ーモデル作業における手の速度と ストップタイムの現場測定について―

深 谷 潔*, 杉 本 旭*, 佐 藤 吉 信*

The study on "Safty distance" of power press Kiyoshi Fukaya*, Noboru Sugimoto*, Yoshinobu Sato*

This study comprises two parts; a simulation of power press operation to study the velocity of hand; an industrial survey of stop-time, that is, time interval between the moment that emergency stop button was pushed (t_0) , and the moment that the ram stopped; both were essential in order to calculate "Safty distance".

In this simulation two types of maximum velocities were gained; one of them was for the movement whose initial velocity was zero, and the other was for the movement whose initial velocity was not zero. The former was 1.43 m/s and the latter was 1.84 m/s. They correspond Two-hand trip and Presence sensing device respectively. But further research is necessary to get standard of velocity in press operation.

Stop-time consisted of delay time of brake (T_1) and effective brake time (T_2) . As to the same press, T_1 was constant. T_1 ruled after-run-length, that is, length that ram moved after the emergency stop button was pushed. T_2 had been expected to dedepend on the crank angle θ_0 at t_0 , but in some Presses the influence of θ_0 was cancelled by counterblance. There was a press whose stop-time was 85 ms, on the other hand there were presses with loose brake whose stop-time were more than helf-cycle.

1. まえがき

プレスの安全装置のうち、光線式のものには、光線を切ってからラムが止まるまでの間に、手が金型の間に届く可能性がある。両手操作式のものにも、両手ボタンを押してからラムが下り切る間に、手が届く可能性がある。それに対して、両手操作式では、毎分ストローク数(以下 spm と表わす)が120以上"というかたちでおさえられている。しかし、危険性と spm との関係が必ずしも明確でない。

近年、アメリカ・西ドイツでは、「安全距離」という概念を用いて、それらの危険性を明確にしてきている。すなわち、両手ボタンまたは光線と危険域一金型の手前の端一の間を「安全距離」だけ離しておいて、手が「安全距離」だけ進む間に、ラムが下り切るかまたは停止するようにしようというものである。そうするためには、どのようにして「安全距離」を決定すればよいであろうか。

両手操作式のものについては、まず両手ボタンを押してから、ラムが下死点に下り切るまでの時間 T_M を知る必要がある。これは spm がわかれば、容易に概算できる。

例えば、ポジティブクラッチの場合は、クラッチピンまたはローリングキーが受け部と嚙み合ってラムが動き出すまでの時間 τ_1 と、ラムが上死点から下死点まで下る時間 τ_2 の和となる。後者は、クランク軸が半回転する分の時間である。前者は、両手ボタンを押したときのピンまたはキーと受け部の相対位置によって異なるが、安全のためにはその最大時間を考えればよい。それは、一つの受け部から次の受け部までの時間となる。例えば、受け部が一つのときはクランク軸の1回転の時間、二つの時は半回転の時間となる。従って、 T_M は spm を用いて次のように表せる。

$$T_M = \left(\frac{1}{n} + \frac{1}{2}\right) \times \frac{60}{\text{spm}}$$
 (sec)

n: 噛合い数 (ピンまたはキーの受け部の数) フリクションクラッチの場合も,上述の嚙み合い数 nが無限大と考えれば,上式が適用できる。

光線式安全装置では、 T_M に対応するものとして、 光線を切ってからラムが停止するまでの時間(以後ス トプタイムと称す) T_s を知る必要がある。これは,ブレーキの調整などによって変化すると考えられるので,原則的には1 台 1 台について測定することが必要であろう。

次に、人間の手の速度を知る必要がある。これは姿勢やストロークなどにより変化すると考えられるが、プレス作業における手の最高速度 V_M をおさえればよい。

「安全距離」は, T_M と V_M の積または T_S と V_M の積として求められる。

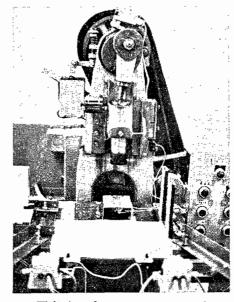
我国では、この「安全距離」という概念をまだ取り入れてはいないが、導入を検討する価値はある。アメリカ、ドイツでは、前述の V_M の値として、 $1.6\,\mathrm{m/s}$ という値を採用しているが、この値が必ずしも我国の実情に合っているとは限らない。また、我国では T_S の値が公表されてはいない。本研究では「安全距離」の導入を検討する際の参考資料とするため、手の速度 V_M とストップタイム T_S の測定を行なった。

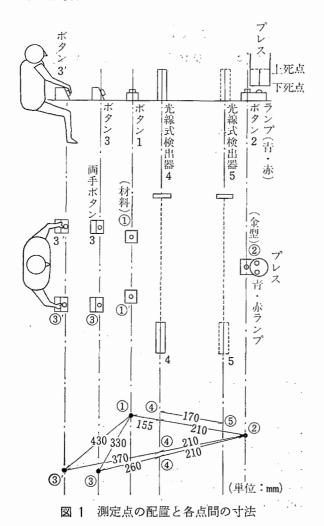
2. 手の速度

2.1 測 定

2.1.1 シミュレーション

プレス作業における手の速度を測定するため、写真 1のプレスのモックアップを用いて、シミュレーションを行なった。シミュレーションは次のような想定の




写真 1 プレスのモックアップ

¹⁾ プレス機械又はシヤーの安全装置構造規格第13条では spm が90 以上と決められているが、spm は120以上と指導している。

もとで行なった。全体的状況としては、座作業で、片 手で扱う小物の加工を行なうものとした。想定する作 業は、まず、右側または左側にある材料をつかみ、そ れを金型に挿入し、両手ボタンを押す。するとラムが 下降し、加工を行なった後、製品等は自動的に排出さ れ元の状態にもどるものとした。

シミュレーションでは、材料をつかむ動作、および 金型に挿入する動作をボタンを押す動作で置き換え た。また、金型中に材料・製品が存在することを、青 ランプの消灯で表示した。

以上は正常な作業サイクルについてのことで、ラムが上昇し、製品等が排出された後に金型のところへ手を出しても何ら危険はないのであるが、両手ボタンを押した直後に手を出すという場合が実は問題である。この危険な状況をシミュレートするため、赤ランプが点灯した時には直ちに金型の位置にあるボタンを押すように被験者に指示した。この赤ランプの点灯は、正

両手ボタン 材料を取る 金型に挿入 正常時 ボタン1 ボタン3を押す K 起動 プレス 下降上昇 点灯 消灯 青ランプ 挿入 排出 異常時 ボタン1 2 ボタン3 ボタン2 人 消灯 赤ランプ-図 2 タイミングチャート

常サイクルの繰り返しの中でランダムに行なった。

このシミュレーションの様子、および動作のタイミングチャートを図1および図2に示す。なおタイミングチャートの中の矢印は因果関係を示す。また、赤ランプ時の点線で示されたボタン3は、赤ランプの点灯とボタン3を押すタイミングが一定ではないこと、および、時によってはボタン3が押されないことを意味する。

2.1.2 測 定 条 件

100回の正常作業の繰り返しの間に,15回に1回の割合で赤ランプを点灯させるものを1試行とした。各被験者ごとに、簡単な練習の後、種々の条件のもとで4試行または8試行の測定を行なった。

なお、被験者は すべて プレス作業の 未経験者 である。

作業が単純なので、熟練ということは考える必要は ないと判断し、練習は作業の要領を覚えるだけの短い ものとした。

条件は、プレスの速度 (spm 90 と 135)、材料の位置 (右と左、図1の1'と1)、両手ボタンの位置 (前と後、図1の3と3') の組合せによる。これを表1に示す。

表 1 実験条件の組合せ

	プレスの速度 (spm)	材料の位置	両手ボタンの 位 置						
. 1.	90(遅)	1 (右)	3 (前)						
2	135(速)	1	3						
3	90	1′(左)	3						
4	135	1'	. 3						
5	90	1	3′(後)						
6	135	1	3′						
7	90	1'	3′						
8	: 135	1'	3′						

2.1.3 測 定 内 容

手の速度として、両手操作式の場合の両手ボタンから金型までの平均速度のほかに、光線式の場合の光線から金型までの平均速度も得られるように、光線式検出器4を設置した。

このようにして、各ボタンを押す時刻、光線を横切る時刻を記録し、その間の時間から、各点間の平均速度を計算した。

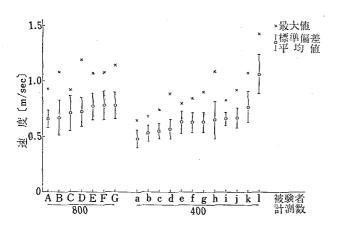


図 3 (a) 平常時の点 1-2 間の平均速度 の平均、標準偏差、最大値

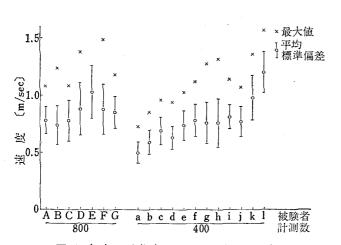


図 3(b) 平常時の点 4-2 間の平均速度 の平均,標準偏差,最大値

2.2 測 定 結 果

各被験者ごとの平均速度の平均,標準偏差,最大値を,図 $3(a)\sim(c)$ に示す。被験者 $A\sim G$ については8試行 $(1\sim8)$,被験者 $a\sim 1$ については4試行 $(1\sim4)$ ずつ行なった。図3(a) の点1-2間とは,図1 のボタン1 からボタン2 までを意味し,図3(b) の点4-2間とは,手が光線4 を切る点からボタン2 ま

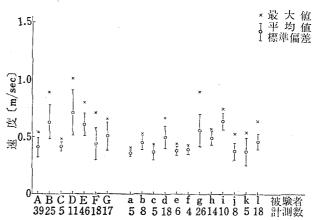


図 3 (c) 赤ランプ時の点 3-2 間の平均速 度の平均,標準偏差,最大値

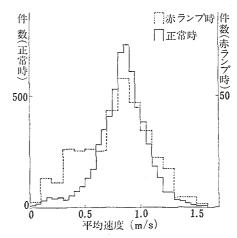


図 4 点 4-2 間の平均速度の ヒストグラム

表 2 2台の光線式検出器を用いて測定したときの手の速度

_									
-	被験者	一試行の回数	実験条件	点 4-5 間	点 5—2 間	点 4-2 間			
•	α	50	遅,右,前	1.21±0.200	0.25±0.032	0.56±0.176			
	β	50	"	1.57±0.296	0.33 ± 0.046	0.81±0.132			
	γ	100	ŋ	1.65±0.285	0.44±0.067	0.96±0.167			
	γ	100	速,右,前	1.32±0.364	0.24±0.122	0.65±0.161			
	γ	100	spm 120, 右, 前	1.81±0.085	0.47±0.068	1.06±0.188			
		1	1			t			

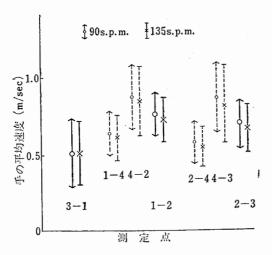


図 5(a) プレスの速度別の手の平均 速度の平均,標準偏差

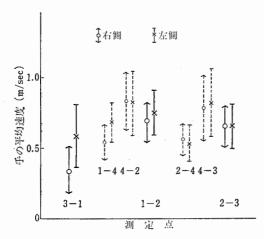


図 5(b) ボタン1の位置別の手の平 均速度の平均,標準偏差

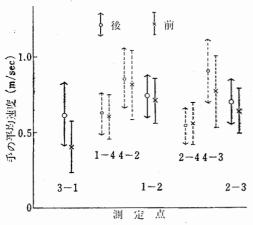


図 5 (c) 両手ボタン3の位置別の手の 平均速度の平均,標準偏差

でを意味する(以下の図についても同様である)。図3(c)の赤ランプ時の測定数の違いは、赤ランプをつけても被験者が気がつかず、正常のサイクルを続行した場合を除いたためである。

全被験者についての点4-2間の平均速度のヒストグラムを図4に示す。

全被験者についての,正常時の各点間の平均速度の 測定条件ごとの平均,標準偏差を図5(a)~(c)に 示す。

光線式検出装置を2台用いた時の測定の1試行の平 均および標準偏差の数例を表2に示す。

2.3 考 察

平常時よりも赤ランプ時の方が速くなることを期待 したが、そうはならなかった。その理由として、

- 1) 赤ランプが点灯した時に, すぐ反応できず, ま ごつく場合がある。
- 2) ボタン2の近くまで手を伸しても, ラムが動いていると, 恐れてボタン2を押すことをためらう場合がある。

などが考えられる。

このため、手の標準速度の決定のためには、赤ランプ時のデータは必ずしも適当でないと思われる。より速い値を持つ平常時のデータにより考察をすすめる。

この測定値より異常時の手の速度を推定する際には 次の点を考慮する必要がある。

- 1) 平常時は被験者に「できるだけ速く」という指示をしていない。
- 2) 速度の水平成分を問題にしているのだが、ボタン2を押す動作はボタンが垂直方向を向いている ため、垂直成分が主で、水平成分は小さいと考え られる。
- 3) この実験では、手の運動の目標点であるボタン 2は、危険域の前端に設置したが、危険域に手を 突っ込んで事故を起こす場合は、目標点が危険域 内にある可能性が考えられる。もちろん、危険域 に入る前の地点に手を伸すつもりが、勢いが余っ て危険域に手が入るとして可能性もあり得るが、 いずれにしても、危険域の内部に手が入った時 は、その前端部では、手は零でない速度を持つと 考えられる。

上述 1), 2) より, 手の最高速度, 特に, 今回の実 験の円弧を描く動きでなく, 水平方向の直線的動きの 場合の手の速度は、今回の測定値より大きいと推定できる。

また、2)、3) により、安全距離算出に用いる手の速度としては、終速度が零の点 3-2 間および点 4-2 間の平均速度よりは、点 3-5 間および点 4-5 間の平均速度の方が適切ではないかと思われる。手の速度パターンの対称性を仮定すれば、点 3-5 間の平均速度のかわりに点 4-2 間の速度を用い得るので、図 3 (b) にはそれをあげた。点 4-5 間の平均速度は表 2 にあげてある。

3 ストップタイム

3.1 測 定

3.1.1 現場計測

ストップタイムの測定は,実際に工場で使用されて いるプレスについて行なった。

非常停止装置の起動は、急停止ボタンの回路を用いて行なった。これは、必ずしもすべてのプレスが光線 式安全装置を備えているとは限らないからである。

測定は、プレスを連続運転し、手動で急停止をかけることによって行なった。その際のラムの動きおよび 急停止をかけた時のタイミングをデータレコーダに記録し、後にオフラインで、計算機を用いてそのデータを処理した。そのブロックダイヤグラムを図6に示す。

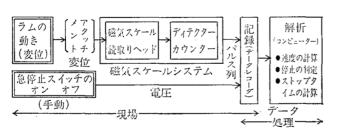


図 6 ストップタイムの測定のブロックダイアグラム

なお、急停止をかける時のラムの位置は適当に変え るようにした。

3.1.2 測 定 装 置

ストップタイムだけの測定装置は、すでに諸外国で 市販されているが、ストップタイムだけでなく、ラム の速度等の測定も可能な測定装置を、本研究のため開 発した。

ラムの動きを電気信号に変換する部分については、

外国で市販されているものは、タコジェネレータを用いている。しかし、タコジェネレータでは、低速度になると出力がなくなるが、この閾値がストップタイムの測定に妥当なものか否かは必ずしも明らかでない。本測定では、そのことも考慮し、ラムの変位をとらえることとした。そのために、ここでは分解能 0.1 mm

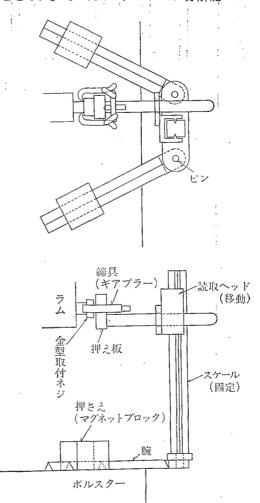


図 7 アタッチメント

写真 2 磁気スケールとアタッチメント

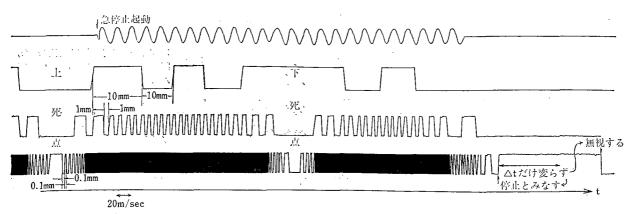


図 8 データレコーダの記録波形の1例

の磁気スケールを用い、ラムの動きをパルス列に変換した。

ラムの変位を磁気スケール読取りヘッドに伝えるためのアタッチメントを図7に示す。また、プレスにセットした状態を写真2に示す。

3.1.3 データ処理法

データレコーダの記録の一例を、図8に示す。

第1チャンネルは,急停止スイッチの信号で,サイン波の部分は急停止スイッチがオンの状態を示す。

第2~第4チャンネルは、磁気スケールカウンター からの信号で、各チャンネルの1パルスは、それぞれ 10 mm, 1 mm, 0.1 mm の変位を表わす。

この1パルス当りの時間から、ラムの速度は計算できる。

停止の判定は、第4チャンネルのパルスにより行な う。パルスが高レベルから低レベル、またはその逆に 低レベルから高レベルに変ってから一定時間たって も、レベルが変らなければ、その最後に変った時点を 停止時点とした。この一定時間を変えることで、停止 速度の閾値を変えることができる。

3.2 測 定 結 果

測定に用いたプレスの性能とストップタイムの平均値・標準偏差の値を表3に示す。このうち、e~i はストップタイムが大きな値を持ち、プレスのクランク軸の半回転分の時間以上ではあるが、材料の送給・製品の排出などが自動で行なわれていて、手を出す余地がないので、必ずしも危険とはいえない。また、j

表 3 プレスの能力とストップタイム								
プレス	能 力 (t)	ストローク (mm)	spm	ストップタイム (m sec)	ブレーキの遅れ 時間 (m cos)	備考		
a 1	35	76	50	100±8	75±11)		
a 2	35,	76	100	111±13	74±11			
a 3	35	76	150	126±13	77±11			
a 4	35	76	200	142±9	75±12) Hart 1997 (40 F		
Ъ	60	160	60	214±22	142±10	停止閾値 5 mm/s 急停止角45°~110°までの平均		
С	30	50	90	85±11	48±9)		
d	50	60	. 70	250±16	176±11			
e .	30	50	100	308±37	215±11			
f	20	20	180	201±18	145±16			
g	50	50	100	361 ± 21	271 ± 21			
h	30	40	120	318±29	229 ± 14			
i	30	50	100	537±38	403 ± 28			
j	30	40	150	-		急停止せず、上死点にて停止		
k	30	40	130	· —		"		

実 Q プレスの能力とストップタイム

プレスb以外の停止閾値は 1 mm/s

よび k は、急停止がかからず、上死点で停止するようになっていた。

コンピューターで計算したラムの速度曲線を、図9(a)~(c) に示す。プレスの区別は表3による。

急停止ボタンを押した時のプレスのクランク角(以下、トリガー角と称する)とストップタイムの関係を図 10(a)(b)に示す。図中のブレーキの遅れ時間とは、急停止ボタンを押してから、ラムの速度パターンが通常のものから外れるまでの時間を、図9より読み取ったものである。また、トリガー角も図9より計算

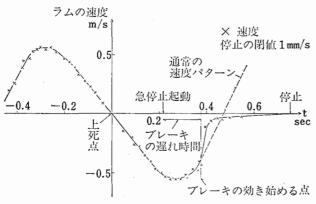


図 9 (a) プレスの速度パターン (プレスb)

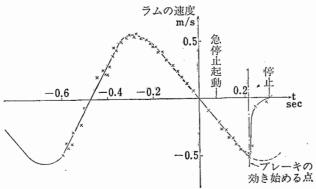


図 9 (b) プレスの速度パターン (プレスb)

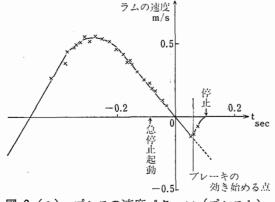


図 9 (c) プレスの速度パターン (プレスb)

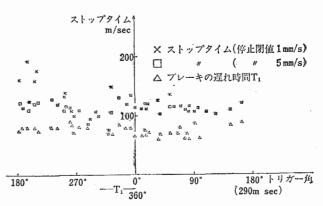


図 10 (a) トリガー角とストップタイム (プレス a·100 spm)

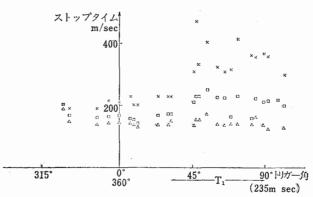


図 10(b) トリガー角とストップタイム(プレスb)

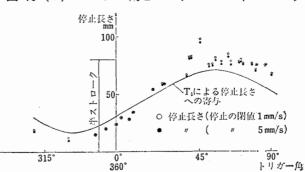


図 11 トリガー角と停止長さ (プレスb)

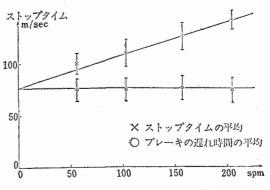


図 12 spm とストップタイム (プレス a)

したもので、角速度一定の仮定のもとで、時間を角度 に換算したものである。

トリガー角と 急停止を かけた後の ラムの 移動距離 (以下,停止長さと称する)の関係を図 11 に示す。

プレス a についての spm とストップタイムの平均 値の関係を図 12 に示す。

3.3 考 察

図9または図10に見られるように、ストップタイムは急停止ボタンを押してからブレーキが効き始めるまでの時間 T_1 と、ブレーキが効め始めてからラムが停止するまでの時間 T_2 とに分けて考えられる。

このうち T_1 は、ブレーキ機構にもよるが、ボタンを押してからリレーが働くまでの時間、空気弁が開くまでの時間、電磁ブレーキのソレノイドが磁界を発生するまでの時間、ブレーキのライニングと摩擦板の間隙が零になるまでの時間などからなると考えられる。

図10や図12に見られるように、多少のバラッキはあるが、 T_1 はトリガー角や spm によらず、ほぼ一定と考えられる。

 T_2 は停止の閾値によって大きく異なっているものがある。この違いは、図 9 (a)に見られるような低速度の部分が原因と考えられる。図 11 に見られるように、プレス b では、この低速度部分(5 mm/sec 以下 1 mm/sec 以上の部分)を積分すると、大きいところで 3 mm 程度である。プレス a では 1 mm 以下である。

一般に、停止の閾値が大き過ぎると、ストップタイムだけ経過した後でも、ラムが何ミリか動くと考えられる。このラムの変位量は、図9(b)(c)のように、速度が急速に零になる場合は小さいが、図9(a)のように低速度部分が多いと無視できないものになり得る。安全距離の考え方のもとでは、急停止装置を起動してからストップタイムだけ経った後には、手が危険域にあると考えなくてはならないので、停止の閾値が大き過ぎると危険である。

図10(a)においては、ばらつきはあるが、ストップタイムはトリガー角によらず、ほぼ一定と言える。図10(b)においては、トリガー角によって2グループに分けられる。プレス $c\sim i$ ではプレスaと同じく、トリガー角による規則定な変化は見られず、一様にばらついた。

プレストに見られるトリガー角によるストップタイ

ムの違いは、ラムの加減速度によるように見える。図 10(b) の座標軸を $T_1(\sec)$ だけ左にシフトすると、ブレーキが実際に効き始めた時のクランク角に対するストップタイムを示すようになるが、 90° 付近で二つに分かれて見える。すなわち、ラムの加速中である 90° 以前のストップタイムは小さく、ラムの減速中にはストップタイムは大きい。

プレス a, c~i ででは、 クランク系とラム系の質量比の違い、 カウンタバランスなどのため、 ラムの速度の影響がばらつきの程度まで小さくなっていると想像される。

図11に、ラムの動きが正弦波で表わせると仮定した時の、ブレーキの遅れ時間 T_1 による停止長さへの寄与を示した。 この図からわかるように、 T_1 が停止長さをほぼ決定している。また時間という面から見ても、表 3 に見られるように、 T_1 はストップタイムの半分以上である。

図12に見られるように、プレス a の図の spm の範囲に限って言えば、ストップタイムは spm の 1 次関数的に増加する。 T_1 だけ差し引けば、一定の角運動量を持つ回転体を一定摩擦トルクで停止させるモデルが適用できる。

4. ま と め

「安全距離」を導入する際の参考データとして、プレス作業における手の速度、プレスの急停止をかけてからラムの停止するまでの時間(ストップタイム)の測定を行なった。

手の速度については、両手式と光線式の場合初速度が異なることを考慮して、それぞれ、1.43 m/s、1.84 m/s という最高速度が得られた。しかし、現実のプレス作業には本研究と異なる種々の動作があると思われるので、この値をそのままプレス作業における手の標準値とするには問題があろう。

ストップタイムについては

- 1) ストップタイムは、急停止ボタンを押してから ブレーキが効き始めるまでの時間 T_1 と、ブレー キによって停止するまでの時間 T_2 に分けられ る。
- 2) 測定したプレスでは、 T_1 の方が T_2 より大き
- 3) 同一のプレスでは、 T_1 は一定と考えられる。

- 4) 一般に、 T_2 のトリガー角による変動は小さく、ストップタイム全体として見ると、ほぼ一定と見なせる。しかし、一部のプレスでは、トリガー角によって T_2 の値は変化する。
 - 5) T₂ は spm と共に増加する。
 - 6) ストップタイムの測定のさいに、ラムが停止したとみなす速度の 閾値が大き過ぎては 危険である。
 - 7) 今回測定したプレスのストップタイムは、0.1 ~0.5 秒程度であった。

などの結果が得られた。

以上の結果から、一応安全距離を計算することはできるが、一つのモデル実験による手の速度だけで安全 距離を決めてしまうことは問題があろう。安全距離を 考える際の一つの参考にしていただきたい。

ストップタイムの測定に協力された, 大和工業相模

工場,宮田金属工業葛飾工場に感謝の意を表したい。 なお、プレス作業のシミュレーション実験のコント ロール、データ処理、ストップタイムのデータ処理に は当研究所の、FACOM 230-35 を用いた。

(昭和51年12月16日受理)

参考文献

- Scharmer H. W.: Greifgeschwendigkeiten bei dur Verarbeitung von Leder und Textilien auf Stanzen und Pressen mit beruhrungslos wirkenden Schutzunrichtungen. Die Berufsgenossenschaft 1974 (26), Heft 4, S.156
- Kneuss P.: Nachgreifsicherheit an Pressen der Metellbearbeitung. Die Berufsgenossenschaft 1974, S. 239

産業安全研究所技術資料

RIIS-TN-76-5

昭和52年1月31日 発行

発行所 労働省産業安全研究所 東京都港区芝5丁目35番1号 電話(03)453-8441番(代)

印刷所 新日本印刷株式会社

郵便番号 108