単管足場の座屈についての一考察

緒言

ビルギングの外装工事に使用される単管足場は正面か らみれば格子状をなし、側面からみれば単スパンの高層 ラーメン状をなしている.この足場の部材が直交する部 分は金具で緊結されているが、この金具は部材から部材 ヘモーメントを伝達する能力はほとんどない.したがっ て、足場は側面からみた場合に非常に不安定となる.こ の不安定さを補うために、通常足場のところどころを壁 等の堅固なものへ碇着している.これを壁つなぎと称す る.

このような構造のとき、足場の建地の荷重を増加させ ると、足場は格子面の面外方向に座屈を起す.そのとき の座屈荷重は、壁つなぎの挿入密度によって異る.壁つ なぎの密度と座屈荷重との関係は非常に興味ある問題で あるが、一般的な場合の解を求めることは困難なので、 単純な場合のみについて解を求めた.

さて単管足場は,壁に対して内外二面に立てられた格 子を腕木で連結する構造である。もしこの両面の格子へ 常に等しい荷重を作用させると,座屈は両面同時に起り しかも座屈の形も等しい・したがって,この場合は一面 の格子のみを考慮すればよい。

また,荷重の作用する建地は一本に限定し,更に問題 を一層単純化する意味で,次の仮定を設ける.

- a. 建地と布の交点において,相互にモーメントの伝 達はない.
- b. 各部材は等断面の単一材である.
- c. スパンおよび層間隔はそれぞれ一定である.
- d. 壁つなぎは建地と布の交点のみにとり, 該点は面 外に移動しない.

§1 格子の面外座屈の限界式

1-1 概 論

格子を,荷重を受けている建地と,それを面外へ拘束 している拘束糸(布と残りの建地からなる)に分割して 考えると,この問題は多数の弾性支承を有し,軸方向力 のみを受ける連続梁の座屈問題になるが,弾性支承が相 互に独立でない点は注意を要する.

次に荷重を受けている建地を各層ごとに分割し,おの おの変形式を求め,これに境界条件を代入して得られた

式が,常に成立するという条件から,座屈限界式が求め られる.*1

この場合条件として,

a. 各層において端部に働く力が釣合う.

という条件と, 各端部において

- b. 上下層の端部に働く力が釣合う.
- c. 撓みが連続である.
- d. 撓角が連続である.

e. 建地の撓みと拘束糸の撓みが一致する.

等の境界条件を考慮しなければならない.

1-2 任意の層における変形式

任意の r 層をとり出しその下端を (r-1) 点,上端 を r 点とする. この層が 垂直力 P を受けて 横に 撓む場 合,両端における端モーメントをそれぞれ M_{r-1} , M_r と し,横力は両端とも等しいので Q_r とし,撓みをそれぞ れ δ_{r-1} , δ_r とすれば,下端から x の位置の撓み U_r につ いて次の式を得る.

E I
$$\frac{d^2 U_r}{dx^2} = -M_{r-1} - Q_r x - P (U_r - \delta_{r-1})$$

ただし EI=部材の曲げ剛性

(A)式を解いて,各項をモーメントのヂメンションにす

れば次式を得る.

$$PU_{r} = P \delta_{r_{-1}} - M_{r_{-1}} - Q_{r} x + C_{r_{1}} \cos \frac{x}{a} + C_{r_{2}} \sin \frac{x}{a} - \dots$$
(B)

$$\frac{1}{a^2} = \frac{1}{E I}$$
(1.1)

である.

なお、両端に働く力を P, M_{r-1} , M_r , Q_r と定めたこ とによって、1-1 における条件 b は すでに満足されてい るが、条件 a は満足されていない.

でなければならない. これを層の釣合式と呼ぶことにする. したがって, P, M_{r-1} , M_r , Q_r , δ_{r-1} および δ_r は 互に独立ではない. これらのうち 1 個は他の函数として 表わされる.

1-3 撓みの連続性

- 1-1 における条件 c を満足するためには(B)式において x = 0 で $U_r = \delta_{r_{-1}}$ x = h で $U_r = \delta_r$
- でなければならない。前者より
 - C_{r1}=M_{r-1}(C) 後者より

 $P\delta_r = P\delta_{r_{-1}} - M_{r_{-1}} - Q_rh + C_{r_1} \cos \frac{h}{a} + C_{r_2} \sin \frac{h}{a}$

を得るが,これに(C)式,(1.2)式および

を代入すると

$$C_{r_2} = \frac{1}{\sin\varphi} (M_r - M_{r_1} \cos\varphi) \cdots (D)$$

となる・(B)式に(C)および(D)を代入したものが,任意のr 層の変形式である.

1-4 撓角の連続性

r層のx点における撓角は(B)式をxで徴分して得られる.

$$\tau_{r} = \frac{dU_{r}}{dx} = -\frac{Q_{r}}{P} - \frac{C_{r_{1}}}{Pa} \sin \frac{x}{a} + \frac{C_{r_{2}}}{Pa} \cos \frac{x}{a}$$

したがって,上,下端の撓角は(C)および(D)を代入すれ ばそれぞれ

$$\tau_{\mathbf{r},\mathbf{r}-1} \coloneqq -\frac{\mathbf{Q}_{\mathbf{r}}}{\mathbf{P}} + \frac{\mathbf{C}\mathbf{r}_{2}}{\mathbf{P}\mathbf{a}}$$
$$= -\frac{\mathbf{Q}_{\mathbf{r}}}{\mathbf{P}} + \frac{1}{\mathbf{P}\mathbf{a}\sin\varphi} (\mathbf{M}_{\mathbf{r}} - \mathbf{M}_{\mathbf{r}-1}\cos\varphi) \dots (\mathbf{E}_{\mathbf{r}})$$
$$\tau_{\mathbf{r},\mathbf{r}} \equiv -\frac{\mathbf{Q}_{\mathbf{r}}}{\mathbf{P}} - \frac{\mathbf{C}_{\mathbf{r}_{1}}}{\mathbf{P}\mathbf{a}}\sin\varphi + \frac{\mathbf{C}_{\mathbf{r}_{2}}}{\mathbf{P}\mathbf{a}}\cos\varphi$$

$$= -\frac{Q_{r}}{P} - \frac{M_{r-1}}{Pa} \sin \varphi + \frac{1}{Pa \sin \varphi}$$

 $(M_r - M_{r-1}\cos \varphi)\cos \varphi$ ………(F) となる・

さて 1-1 の条件 d を満足するためには r 層の上端と (r+1)層の下端の撓角が等しくなければならない・ すなわち,

 $\tau_{\mathbf{r},\mathbf{r}} = \tau_{\mathbf{r}+1,\mathbf{r}}$

. . .

これに(E)、(F)を参考にし、整理すれば次式を得る・ $M_{r-1}-2M_r\cos \varphi + M_{r+1} + Q_r a \sin \varphi$

これが r 点における 撓角の連続性を表わす式である.

1-5 拘束条件

図-2

拘束糸の任意の点 r に,格子面に直角な力 S_r を加え たとき,拘束糸は r 点のみならず他の点も撓む.したが って, r 点の撓みは r 点の力 S_r ばかりでなく,他の点 の力 S_0, S_r ,..... S_n によっても生じ,これらが同時 に作用するときはその和になる.

今 t 点に働く力 $S_t = 1$ によって 生ずる r 点の撓みを α_{tr} とすれば、 S_0、 S_n 力が同時に作用したときに r 点に生ずる撓みは、

 $\delta_{\mathbf{r}} = S_0 \alpha_{0\mathbf{r}} + S_1 \alpha_{1\mathbf{r}} + \dots + S_n \alpha_{n\mathbf{r}}$

となる.しかるに拘束糸が建地から受ける力は

o 点において So=Q1

r 点において $S_r = Q_{r+1} - Q_r$

n点において Sn=-Qn

であるから、これを前式に代入して整理すると

 $\delta_{\mathbf{r}} = \mathbf{Q}_1(\boldsymbol{\alpha}_{0\mathbf{r}} - \boldsymbol{\alpha}_{1\mathbf{r}}) + \mathbf{Q}_2(\boldsymbol{\alpha}_{1\mathbf{r}} - \boldsymbol{\alpha}_{2\mathbf{r}}) \cdots \cdots \cdots \cdots$

 $\cdots + Q_n(\alpha_{n-1,r} - \alpha_{n,r}) \cdots (1.5)$

となる. (1.5) 式のδrを (1.2) 式や (1.4) 式のδrと 同じものだとすれば, (1.5) 式は 1-1 における条件 e を満足する.

なお,式中の常数 α_{tr} は相反法則により $\alpha_{tr} = \alpha_{rt}$ また, r 点の拘束が独立であるときは

 $\alpha_{tr} = \alpha_{rt} = 0$

である.

さて,建地の水平移動に対する拘束条件について述べ たのであるが,この他に建地のo点およびn点が回転に 対して拘束するかしないかによって更に拘束条件が加わ る.

o 点が回転端
$$M_{o} = 0$$

o 点が非回転端 $\tau_{10} = -\frac{Q_{1}}{P} + \frac{1}{Pa \sin \varphi}$ … (1.6)
 $(M_{1} - M_{0} \cos \varphi) = 0$
n 点が回転端 $M_{n} = 0$
n 点が非回転端 $\tau_{nn} = -\frac{Q_{n}}{P} - \frac{M_{n-1}}{Pa}$
 $\sin \varphi + \frac{1}{Pa \sin \varphi}$
 $(M_{n} - M_{n-1} \cos \varphi)$ … (1.7)

1-6 座屈の限界条件

以上のように,格子の一つの建地が垂直荷重Pを受け て面外変形を生ずる場合,その変形を M_0 ……, M_n , Q_1 ……, Q_n , δ_0 ……, δ_n なる合計 (3 n + 2) ケの未定 常数で表わしたとき,これらの常数の間にはある関係が 成立つことを示した.すなわち 1-1 で述べた種々の条件 を考慮した結果最終的に,

a. (1.2) 式で示される各層の釣合

b. (1.4) 式で示される撓角の連続性

c.(1.5)式で示される水平変位に対する拘束

d. (1.6) および(1.7) 式で示される材端の回転に対 する拘束

なる関係が常数間に成立することが分った.

さて, (1.2), ……(1.7) 式は Mo…… に関する同次 一次の連立式で, しかも式の数が Mo……の数と一致す る・したがって,これらの常数が同時に0でない場合に 対して,(1.2) ……が成立するためには,同式中の M。 ……の係数を要素とする行列式が0でなければならな い、これらの係数は P, a, φ および α_{tr} の函数である から,この行列方程式は結果的には, P, EI,および h の函数関係を表わすことになり,この方程式をPについ て解けば座屈の限界荷重が求められる、すなわち行列式 =0が座屈の限界条件式である、*2

もし, Mo, ……が同時に0である場合には, (A)式は

$$E I \frac{d^2 U_r}{dx^2} = -PU_r \cdots (G)$$

なる間係が得られる.これも一つの座屈限界値であって 層の間隔 h を座屈長とするオイラーの座屈値と称する.

ただし、(G)式の前提として、 $M_o = M_n = 0$ が必要であ るから、建地の両端が非回転端の場合には、(1.8) 式の 座屈は生じない、両端が回転端の場合には、行列式=0 の解と、(1.8) の値のうちの低い方が限界荷重となる.

- *1 与えられた境界条件を満足する弾性変形の微分方 程式の解が必ず存在するために必要な条件が,座 屈の限界条件になることについては,F. Bleich: Buckling Strength of Metal Structures: Mc Graw Hill の P.62~64 に述べられている. 連立 微分方程式の場合の例として,仲威雄,加藤勉:単 一材の座屈:東大出版会の P.30~39 に応用例があ る.
- *2 本解法の照査のために,2 層2スパンの場合の解 を,チモセンコ著,仲,濤川,久田訳:座屈理論: コロナ社の P.67~72の,中間に弾性支承を有する 柱の座屈の解と照合した結果,両者が一致すること が確められた.

§2計算例

2-1 概 論

前節において述べた一般解は,理論的には簡単なこと であるが,実際の計算はなかなか煩雑で困難である.な ぜならば,

- a. 拘束糸が高次の不静定構造であるために,(1.5) 式中の *a*tr を求めることが困難である.
- b. 限界条件も高次の行列方程式であるために,容易 に解けない.

からである.したがって,前者に対しては æur をなるべ く合理的な近似値で置換え,後者に対しては未定常数を 消去して,行列式の次数をなるべく下げる等の工夫が必 要である. さて,以下に比較的簡単な場合の計算例を示す.

格子は図ー4に示すように3層3スパンで,4隅に壁 つなぎがあり,各部材の末端は,面外への移動に対して は弾性的な拘束を受けているが,回転に対しては自由で あるとする・したがって,この格子は上下左右対称な構 造である・この格子の側端の柱あるいは中間の柱に垂直 荷重を作用させた場合について解くことにする・

なお,座屈荷重はmを係数としたときに,次のような オイラー値の形式で表わすことができるので,計算の結 果をPの代りにmで表わすことにする.

 $P = \frac{\pi^2 E I}{(mh)^2} \dots (2.1)$

ただし h=層の間隔

EI=部材の曲げ剛性

これはmを用いる方が,部材や格子の寸法に無関係に 座屈を表現することができるからである.このmは座屈 長と層間隔の比を表わすものであるが,(1.1)式および (1.3)式を参照すると

m =	π	$=\pi a$	 (2.2))
	φ	h		'

2-2 側端柱に載荷の場合

建地の両端は回転自由で、水平移動不能であるから

 $M_0 = M_- = 0$ (2.3)

$\delta_0 = \delta_3 = 0$ (2.4)
(1.2) 式は
$-M_1+Q_1h+P\delta_1=0$ (2.5)
$M_1 - M_2 + Q_2 h + P(\delta_2 - \delta_1) = 0$ (2.6)
$M_2 + Q_3 h - P \delta_2 = 0$ (2.7)
(1.4) 式は
$-2\mathbf{M}_{1}\cos\varphi + \mathbf{M}_{2} + \mathbf{Q}_{1}\mathbf{a}\sin\varphi - \mathbf{Q}_{2}\mathbf{a}\sin\varphi = 0\cdots(2.8)$
$M_1 - 2M_2 \cos\varphi + Q_2 a \sin\varphi - Q_3 a \sin\varphi = 0 \dots (2.9)$
また,両端の移動不能のために,
$\alpha_{01} = \alpha_{02} = \alpha_{32} = \alpha_{31} = 0$
上下対称な構造であるために、また相反法則により
$\alpha_{11} = \alpha_{22}, \ \alpha_{12} = \alpha_{21}$
(1.5) 式は
$-\mathbf{Q}_{1}\boldsymbol{\alpha}_{11}+\mathbf{Q}_{2}(\boldsymbol{\alpha}_{11}-\boldsymbol{\alpha}_{12})+\mathbf{Q}_{3}\boldsymbol{\alpha}_{12}-\boldsymbol{\delta}_{1}=0 \cdots \cdots (2.10)$
$-Q_1\alpha_{12}+Q_2(\alpha_{12}-\alpha_{11})+Q_2\alpha_{11}-\delta_2=0 \dots (2.11)$
(2.5)~2.7) 式へ (2.8)~(2.11) を代入して, M1,

M₂, δ₁, δ₂ を消去すると、Q₁, Q₂, Q₃ に関する次の 式を得る・

$$Q_{1} \left\{ \frac{2\sin\varphi\cos\varphi}{1-4\cos^{2}\varphi} + \frac{h}{a} - \frac{P}{a}\alpha_{11} \right\} \\ + Q_{2} \left\{ \frac{\sin\varphi}{1+2\cos\varphi} + \frac{P}{a}(\alpha_{11} - \alpha_{12}) \right\} \\ + Q_{3} \left\{ \frac{-\sin\varphi}{1-4\cos^{2}\varphi} + \frac{P}{a}\alpha_{12} \right\} = 0 \dots (2.12) \\ Q_{1} \left\{ \frac{\sin\varphi}{1+2\cos\varphi} + \frac{P}{a}(\alpha_{11} - \alpha_{12}) \right\} \\ + Q_{2} \left\{ \frac{-2\sin\varphi}{1+2\cos\varphi} + \frac{h}{a} - \frac{2P}{a}(\alpha_{11} - \alpha_{12}) \right\} \\ + Q_{3} \left\{ \frac{\sin\varphi}{1+2\cos\varphi} + \frac{P}{a}(\alpha_{11} - \alpha_{12}) \right\} = 0 \dots (2.13) \\ Q_{1} \left\{ \frac{-\sin\varphi}{1-4\cos^{2}\varphi} + \frac{P}{a}\alpha_{12} \right\} \\ + Q_{2} \left\{ \frac{\sin\varphi}{1-4\cos^{2}\varphi} + \frac{P}{a}(\alpha_{11} - \alpha_{12}) \right\} = 0 \dots (2.14) \\ + Q_{4} \left\{ \frac{2\sin\varphi\cos\varphi}{1-4\cos^{2}\varphi} + \frac{P}{a}(\alpha_{11} - \alpha_{12}) \right\}$$

この3式の Q,……の係数の行列式を0とおいたもの が座屈の限界条件式である.

次に α_{11} , α_{12} の値を求める.拘束糸は図-5に示すと おりであるが,これの A_1 点に格子面に直角な力1を作 用させたときの, A_1 点, A_2 点の撓みがそれぞれ α_{11} , α_{12} である. さてこの拘束糸は二次の不静定構造であ る.

今, h = 層間隔, ℓ = スパン, $\ell/h = r$ とし,途中の 計算を省略して結果だけ示せば次のとおりである.

$$\begin{split} \alpha_{11} &= \frac{h^3}{54\text{EI}} \cdot \left\{ \frac{4200r^9 + 31076r^6 + 43744r^3 - 2734}{80r^6 + 336r^3 + 135} \right\} \\ \alpha_{12} &= \frac{h^3}{54\text{EI}} \cdot \left\{ \frac{1200r^9 + 17430r^6 + 20304r^3 + 6615}{80r^6 + 336r^3 + 135} \right\} \end{split}$$

$\frac{2\sin\varphi\cos\varphi}{1-4\cos^2\varphi} + \varphi - \varphi^3\varepsilon$	$\frac{\sin\varphi}{1+2\cos\varphi}+\varphi^{3}(\varepsilon-\omega)$
$\frac{\sin\varphi}{1+2\cos\varphi}+\varphi^3(\varepsilon-\omega)$	$\frac{-2\sin\varphi}{1+2\cos\varphi}+\varphi-2\varphi^{3}(\varepsilon-\omega)$
$\frac{-\sin\varphi}{1-4\cos^2\varphi}+\varphi^3\omega$	$\frac{\sin\varphi}{1+2\cos\varphi}+\varphi^{s}(\varepsilon-\omega)$

上式は2軸対称行列式であるから分解し,整理すると 次式となる.

 $\frac{\sin\varphi}{1-2\cos\varphi} + \varphi - \varphi^{3}(\varepsilon + \omega) = 0 \quad \dots \quad (2.18)$ $\frac{\sin\varphi}{1+2\cos\varphi} - \frac{\varphi}{3} + \varphi^{3}(\varepsilon - \omega) = 0 \quad \dots \quad (2.19)$

これら φ をについて解いて, その最小の正根を求め ればよい. さらにこの φ を(2.2)式に代入すればmが 得られる.

与えられたrに対する φ, m の値を表-1に示す.

r	arphi	m
1.6	1.094	2.872
1.4	1.106	2.841
1.2	1.123	2.789
1.0	1.146	2.741
0.8	1.189	2.642
0.2	1.481	2.057
0	2.094	1.500

表一1 側端柱の場合

2-3 中間柱に載荷する場合

前の場合と同様に行なう・柱の両端が回転端であるか ら

$M_0 = M_3 = 0$ (2.20)
(1.2) 式は
$-M_{1}+Q_{1}h+P(\delta_{1}-\delta_{0})=0 (2.21)$
$M_1 - M_2 + Q_2 h + P(\delta_2 - \delta_1) = 0$ (2.22)
$M_2 + Q_3h + P(\delta_2 - \delta_2) - 0$ (2.23)
(1.4) 式は
$-2M_2\cos\varphi + M_2 + Q_1 a \sin\varphi - Q_2 a \sin\varphi = 0$

$$\overset{\text{P}}{=} \begin{array}{c} -\frac{P}{a} \cdot \frac{h^{3}}{EI} = -\frac{h^{3}}{a^{3}} = \varphi^{3} \quad \mathcal{C} \not{\otimes} \not{\otimes} h^{3} \not{\otimes} \\ \frac{P}{a} \alpha_{11} = \varphi^{3} \cdot \frac{4200r^{9} + 31076r^{6} + 43744r^{3} - 2734}{54(80r^{6} + 336r^{3} + 135)} \\ = \varphi^{3} \varepsilon \dots \qquad (2.15) \\ -\frac{P}{a} \alpha_{12} = \varphi^{3} \cdot \frac{1200r^{9} + 17430r^{6} + 20304r^{3} + 6615}{54(80r^{6} + 336r^{3} + 135)} \\ = \varphi^{3} \omega \dots \qquad (2.16)$$

となる・上式中の ε , ω は r のみの函数であるから, ℓ と hの比が与えられれば, 定まる値である・以上の値を 代入すると座屈の限界式は次のようになる・

$$\frac{-\sin\varphi}{1-4\cos^2\varphi} + \varphi^3\omega$$

$$\frac{-\sin\varphi}{1+2\cos\varphi} + \varphi^3(\varepsilon - \omega) = 0 \dots (2.17)$$

$$\frac{2\sin\varphi\cos\varphi}{1-4\cos^2\varphi} + \varphi - \varphi^3\varepsilon$$

.....(2.24)

 $\mathbf{M}_1 - 2\mathbf{M}_2 \cos\varphi + \mathbf{Q}_2 \mathbf{a} \sin\varphi - \mathbf{Q}_3 \mathbf{a} \sin\varphi = \mathbf{0} \cdots (\mathbf{2}, \mathbf{25})$

さて,格子が上下対称構造であることと,相反法則に より,

さて

$$\varepsilon' = \frac{42984r^3 + 120759r^6 + 71204r^3 + 7560}{162(960r^6 + 1568r^3 + 245)} \dots (2.30)$$

表-2はrに対する φ , m を示す.

r	φ	m
1.4	0.567	5.541
1.2	0.726	4.327
1.0	1.019	3.083
0.8	1.339	2.346
0.6	1.473	2.133
0.4	1.628	1.920
0	2.094	1.500

表-2 中間柱の場合

2-4 結果の考察

表-1,表-2 において,mはいずれも1より大きい.したがって,(1.8)式の座屈すなわち各層ごとに変曲する座屈が起きないことが分る.

図-6

図-6はmとrの関係を図示したものであるが、二つの曲線の始点となっている r = 0, m = 1.5 は、 束ねら

とおけば, 座屈の限界式は次のようになる.

 $\frac{-\sin\varphi}{1-4\cos^2\varphi} + \varphi^3 \omega'$ $\varphi - \varphi^3 \zeta' \qquad \frac{\sin\varphi}{1+2\cos\varphi} + \varphi^3 \kappa' = 0 \dots (2.34)$ $\varphi^3 \kappa' \qquad \frac{2\sin\varphi\cos\varphi}{1-4\cos^2\varphi} + \varphi - \varphi^3 \varepsilon'$

れた4本の柱が同時に座屈する場合に相当する.また側端柱の曲線の漸近線であるm=3は、柱が中間で全然拘束を受けない場合に相当する.

r < 0.95 で、中間柱の曲線が側端柱のより下方にあることは、 ℓ がhに比べて小さいときは、前者の方が中間拘束が強いことを意味している.また、r > 0.95になると中間柱の曲線が急激に上昇していることは、 ℓ がhに比べて大きくなると、柱が座屈するのでなく、布が曲げ降伏することを意味している.

結 語

前節において,比較的簡単な,3層3スパンで4隅に 壁つなぎがあり,かつ各部材端が回転自由である格子の 1本の柱のみに荷重を作用させた場合について解を求め たのであるが,数本の柱に荷重が作用する場合が普通な ので,その場合の見解を述べる.

いま, i本の柱に荷重が作用するときの1本あたりの 座屈荷重を Pi とすると,一般に荷重が分散的に作用す る方が,集中的に作用する場合より強度が高い故,全座 屈荷重では

 $4 P_4 > 3 P_3 > 2 P_2 > P_1$

となる、また荷重を受ける柱の数が増すと、補強の役目 をしている拘束糸の柱の数が減る故、個々の大きさでは P1>P2>P3>P4

となる、したがって、これらのことから同時に数本の柱 に荷重が 作用する 場合でも、 およその 見当がつけられ る、

一方,実際の場合は3層3スパンのブロックのみでな く,多ブロックとなることが多い.この場合は,柱の中 間の拘束度が強くなるから,座屈荷重も当然増すものと 思われる. There are many testing methods to measure shearing strength of soil, such as direct shear test, triaxial compression test, unconfined compression test and vane-test etc.

The purpose of this series of test is to determine shearing resistance of Kanto-Loam, and to find out the difference between direct shear test and unconfined compression test.

The values of cohesion C and angle of internal friction ϕ determined from the results of direct shear test, and the values of unconfined compressive strength q_u from the values of unconfined compression test are shown in the following.

angle of internal friction $\phi = 15^{\circ} \sim 30^{\circ}$ cohesion $C = 0.7 \sim 1.5 \text{kg/cm}^2$ unconfined compressive strength $q_u = 1.5 \text{kg/cm}^2$

Theoretical relation between unconfined compressive strength q_u and angle of internal friction ϕ and cohesion C is expressed by the equation

$$q_u = 2C \tan (45^\circ + \frac{\phi}{2})$$

Substituting ϕ and C which are the value from the results of direct shear test in above equation, the value $\overline{q_u}$ that are named converted unconfined compressive strength are obtained.

The value $\overline{q_u}$ must be equal to the value q_u theoretically, but the ratio of the value $\overline{q_u}$ to the value q_u is

$$\frac{q_u}{q_u} = 0.4 \sim 0.6$$

This discrepancy in these values may be caused by difference of shearing processes in these tests, and of size of specimens for test, as specimens have many seams in them.

Theoretical Consideration on Buckling Strength of

Tubular Pole Scaffold

by Yeshitada Mori

Since a tublar pole scaffold arround the outside of a building under construction is usually tied to the building at many points, no displacement of the scaffold in the direction normal to the surface of the scaffold occurs at a connecting point, while at another point the scaffold tends to move in such direction when no crosswise bracings.

On some assumptions this scaffold can be regarded as such a lattice with many spans and layers, that no moment is transmitted from member to member at a pannel point.

In this report the buckling problem of this lattice when it buckles normally to the surface of the lattice, by the vertical load acting on only a upright, has been treated as a charactristic value problem of differencial equation, and in a general case only the critical load equation has been induced, but in some simplified cases

32

the actual solution of the critical load has been acquired; instead of the critical load P the value m in the following Eulerian expression has been acquired, since m is independent on the dimensions of the member of the scaffold.

$$\mathbf{P} = \begin{array}{c} \pi^2 \to \mathbf{I} \\ \mathbf{m}^2 \ \mathbf{l}^2 \end{array}$$

where E is the modulus of elasticity of the material, I is the moment of inertia of the section of the member, and 1 is the vertical distance between a ledger and an adjoining ledger.