12. 新素材物質などによる主な爆発・火災災害事例（昭和61年〜平成3年）

(1) 特殊材料ガス

<table>
<thead>
<tr>
<th>発生年月</th>
<th>ガスの種類</th>
<th>事故の種類</th>
<th>発生概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>昭和61年9月</td>
<td>モノシラン</td>
<td>爆発火災</td>
<td>モノシランを原料とするプラズマ蒸着装置において、実験者が誤作を誤って反応器に空気を導入したために爆発が起こり、排ガス処理用のアルカリ洗浄塔に設けてあった破膜板が作動した。爆発がポリ塩化ビニル製であったために、排出ガス中のモノシランの発火によって燃え、火災となった。</td>
</tr>
<tr>
<td>昭和62年4月</td>
<td>三フッ化ホウ素</td>
<td>漏洩</td>
<td>半導体実験室において、イオン注入用二フッ化ホウ素の小型ポンプ（70g/入り、50kg/cm²）のバルブから白煙がでているのが発見された。</td>
</tr>
<tr>
<td>平成元年6月</td>
<td>モノシラン</td>
<td>漏洩火災</td>
<td>輸入したCVD（化学蒸着）装置の性能試験のためモノシランのポンベのバルブを開いたところ、除害装置に至る排気用配管の途中のバルブが「開」になっていたため、モノシランが配管中に入り込み、配管内に残っていた空気と接触して発火、さらに配管のフランジ部分からモノシランが漏洩して火災となった。</td>
</tr>
<tr>
<td>平成元年10月</td>
<td>ゲルマン</td>
<td>ガス貯槽の破裂</td>
<td>四塩化ゲルマニウムとジチュールアルミニュウムハイドライドからゲルマンを製造する装置において、生成したゲルマンを液体窒素により液化させて粗ガス貯槽から貯蔵したのち、これを精製するために加温・気化させていたところ、ゲルマンが分解したためか、貯槽が破壊した。</td>
</tr>
<tr>
<td>平成元年12月</td>
<td>モノシラン</td>
<td>漏洩爆発</td>
<td>シリコンキャビネット及び制御盤の付近でガス漏洩の警報を発したので、作業者が点検を行っていたところ、制御盤内で爆発が生じ、爆風と飛散物により作業者が重傷した。</td>
</tr>
<tr>
<td>平成2年3月</td>
<td>モノシラン</td>
<td>漏洩火災</td>
<td>ポンベの交換に際し、ポンベの保護キャップと、バルブをシールしていた収納チューブをはずしたあと、ガス取り出し口のキャップをゆるめたところ、モノシランが噴出して発火、火災となった。保護キャップ内面と収納チューブの間に隙間がなかったために、保護キャップをゆるめた際に収納チューブとバルブのハンドルが共回りしてバルブが開いた状態になってしまったものとみられる。</td>
</tr>
<tr>
<td>平成2年6月</td>
<td>モノシラン</td>
<td>漏洩火災</td>
<td>ガス充填室においてモノシランをポンベからブランドへ移す作業をしていながら、バルブをゆるめたときにバルブからモノシランが噴出して発火、作業者は顔に火傷を負った。ガスは数日間燃え続けた。</td>
</tr>
<tr>
<td>平成3年10月</td>
<td>モノシラン</td>
<td>爆発</td>
<td>大型の実験室でプラズマCVD装置を用いて実験中、亜鉛酸化窒素流路の逆流防止弁が作動しなかったためか、高圧の亜鉛酸化窒素ガスコンシランのポンベに逆流し、混合ガスが形成されて爆発、モノシランのポンベが破壊した。</td>
</tr>
<tr>
<td>発生年月</td>
<td>金属の種類</td>
<td>事故の種類</td>
<td>発生要因</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>昭和61年2月</td>
<td>チタン</td>
<td>発火</td>
<td>ウラン濃縮用のパイロットプラントの運転準備に際して、失活した酸化剤を活性化するために、あらかじめ25kg/cm²に酸素で加压した酸化剤を失活剤を送りこんだ。酸化剤は30kg/cm²に送るので、酸素放出バルブにより酸素を放出して、バルブ操作をしたとき、バルブから発火した。チタン製バルブのディスクと弁棒の隙間が小さかったために、酸素の流れによりディスクが弁棒と弁棒の間で激しく振動・衝突を繰り返し、チタンが発火したものと推定された。</td>
</tr>
<tr>
<td>昭和61年4月</td>
<td>コバルト・ニッケル合金</td>
<td>水蒸気爆発</td>
<td>アーク式電気炉において、コバルト・ニッケル合金を1500～1600℃に溶融し、酸素を吹き込んで脱炭素を行っていたところ、炉内溶湯が発生とともに黒煙を発生し、しばらくして炉の上蓋が炉内に落ちしたため、飛び散る溶湯が炉前の冷却水槽に入り水蒸気爆発を起こした。炉内が発火した理由は、炉体が冷えきっているところへ、炭素分の多いスクラップを炉床に置いて溶接させ、そこへ酸素を吹き込んだため、観察に脱炭反応がすすんでCO及びCO₂を発生することによると考えられた。</td>
</tr>
<tr>
<td>昭和61年12月</td>
<td>アルミニウム・マグネシウム合金</td>
<td>粉じん爆発</td>
<td>アルミニウム（67%）とマグネシウム（33%）からなる合金の粉じんを製粉末端に装入した工場において、粉砕機付近に溜まっていた粉じんを電気陽極機により吸引したこと。陽極機が発火し、その炎がホース内を逆火して粉砕機に入ったり、粉砕機ホッパーが爆発した。爆裂機内での爆発の原因としては、吸引ホース（ポリ塩化ビニール製、内径3.8cm）の漏電を考えられたが、耐電しやすい材料とはいえ流速が速いことから着火源とはなりにくいとみられ、フィルタに付着した粉じんの固定微粉による放電が有力であると推定された。</td>
</tr>
<tr>
<td>昭和62年10月</td>
<td>ネオジム</td>
<td>水蒸気爆発</td>
<td>ネオジム鉄合金の試作工場において、ネオジム中に含まれるカルシウムを除去するために、真空炉で1500℃付近の温度で加熱・溶解処理した。その後、水冷ターンテーブルに溶融ネオジムを鉄込み中に、同テーブルの一部が破損したために冷却水が噴出し、ネオジムと接触して真空炉内の圧力が上昇して炉の扉が破損した。</td>
</tr>
<tr>
<td>昭和62年11月</td>
<td>金属ケイ素</td>
<td>粉じん爆発</td>
<td>金属ケイ素の微粉砕工程において、プロワーの回転軸のオイルシールが破損したため、スプリングが回転軸に接触し、粉砕機内で粉じん爆発が発生した。この粉砕機は密閉構造で、帯電を封入して低酸素濃度等間気で運転するものであったが、酸素濃度の測定が行われていないことが災害発生の一因となった。</td>
</tr>
<tr>
<td>平成元年12月</td>
<td>金属ケイ素</td>
<td>粉じん爆発</td>
<td>金属ケイ素の微粉砕加工設備において、通常運転中に、プロワー内部で爆発が生じた。原因は、プロワーの羽根車と吸い込み管の間隔が3mmと小さかったため、なんらかの理由で羽根が接触し、金属ケイ素粉が発火・爆発したものと考えられた。</td>
</tr>
<tr>
<td>発生年月</td>
<td>化学物質名</td>
<td>事故の種類</td>
<td>発生概要</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 昭和 61年 5月 傷 1 | アントラキノンスルホン化物 | 爆発 | アントラキノン系の色素原を合成するため、1,4-ジ（4-ヒドロキシフェニルアミノ）アントラキノンスルホン化物（DHANS）を過塩素酸ソーダで酸化し、DHANSの酸化物（数g）を得た。これを乾燥したのちスーパーデルで粉碎していたところ、突然爆発した。
| 昭和 61年 7月 死傷 0 | ジアゾニウム塩 | 爆発 | パラニトロアミン-O-スルホン酸（C₆H₄NO₃NH₂SO₃H）を塩酸性下で冷蔵しつつ、亜硝酸ナトリウム水溶液を滴下してジアゾ化したのち、速やかにクエン酸塩のウエットケイを得た。次に、このウエットケイをサリチル酸溶液中に滴下してカップリングさせていたところ、反応容器内で発火した。
| 昭和 61年 7月 死傷 0 | バラオキシ安息香酸 | 粉じん爆発 | 合成繊維の原料であるバラオキシ安息香酸の製造ラインの乾燥工程において、バラオキシ安息香酸を気流乾燥していたところ（乾燥塔入口温度は148℃）、粉じん爆発を生じた。この乾燥塔は、粉じん部（ハッパマーミル）と分岐部を備えたものであったが、原料の湿潤品を供給する際に金属の異物が混入したとみられ、ハッパマーミルの衝撃火花によりバラオキシ安息香酸の微粉が発火したものを推定された。
| 昭和 62年 7月 傷 1 | 1,2-ナフトキノン-ジアジド-5スルホネルクロライド（NAC） | 発火 | NACの製造が完了し、製品をファイバドラムに詰めて終わらせたのに、ふるいの上部（かたまり）から火が飛び出すようとして直接出口を摂出してしまったとき、ふるいの内部で発火・焼けた。このため、高温の分解ガスが爆発し、ファイバドラムに詰めてあった製品も分解した。発火の原因としては、ふるいの出口を指で摂めていたときに静電気が発生し、その放電により微粉状のNACが発火し推定された。
| 昭和 62年 8月 傷 1 | 過酸化物 その他 | 爆発 | 活性炭にロジウムを付着させた触媒をトリフェニルホスフィンエタノール溶媒で処理してロジウムを抽出する作業において、抽出を終えた後、25ミリリットルの抽出液に60%過塩素酸溶液を少量加えて130℃で酸化分解し、内容物をシロップ状にまで煮詰めた。これに61%硝酸を2ミリリットル添加したとき、コンタクタルケーキが爆発した。爆発原因としては、過塩素酸エステルまたは過塩素酸エステルの酸化、過酸化物と添加した硝酸の爆発的反応などが考えられた。
| 昭和 63年 2月 死傷 5 | n-ヘキサン | 爆発 | タングステンカーバイド粉、コバルト粉及びその他の金属粉とパラフィン、n-ヘキサンを混ぜたスラリーを熱風乾燥させ、顔料メタルを製造する工程において、顔料製造機の1台を改造のため開放中、機内に残留していたn-ヘキサンの蒸気が工場内に漏洩した。n-ヘキサンとピン、オイルヒータ室などに流れ込み、なんらかの着火源により爆発した。
<p>| 昭和 63年 6月 傷 1 | 過酸化物 | 爆発 | ジクミルバーオキサイドを製造するため、循環式反応装置を用いてクミンハイドロポーバーオキサイドとα-クミルアルコールを反応中、反応液の循環が不安定になったので、作業員が確認のため近づいたところ、熱交換器が突然爆発し、反応液が噴出し、火災発生。原因は、反応促進剤として添加した水酸化カリウムが、反応に使用した過塩素酸と反応して過塩素酸カリウムが生成し、これが熱交換器内に付着して、ジクミルバーオキサイドと爆発的に反応したものと推定された。 |</p>
<table>
<thead>
<tr>
<th>発生年月</th>
<th>化学物質名</th>
<th>事故の種類</th>
<th>発生概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>昭和63年7月
死傷0</td>
<td>ジケン</td>
<td>異常反応</td>
<td>農薬の原料である2-オキシ-4-クロロキノサリンを製造するため、4-クロロ-2-ニトロアミリンとジケンを反応させる工程において、事故の前日に48%のKOHを吸い上げ管で反応布に仕込んでいた。当日、同じ吸い上げ管を用いてジケンを計量タンクに仕込むと、数時間して計量タンクからジケンが噴出し始め、しばらくして同タンクが破裂した。事故原因は、吸い上げ管に残存していたKOHが計量タンクに入り、ジケンと発熱的に反応したものと思われる。</td>
</tr>
<tr>
<td>平成元年1月
死傷0</td>
<td>4-ニトロソ-α-クレゾール</td>
<td>異常反応</td>
<td>重合禁止剤として製造した4-ニトロソ-α-クレゾール600kgをコンカル回転式乾燥機で乾燥するため、乾燥機ジャケットに50℃の温水を15時間通水したのち、窒素を充填して静置しておいたところ、突然マンホールの蓋が吹き飛び、噴出した内容物に着火、爆発した。原因は、前回のバッチの乾燥に用いたアルカリが乾燥機内に残存しており、このため乾燥物（重合禁止剤）の分解温度（SADT値75℃）が低下して急速に分解がすすんだためと思われる。</td>
</tr>
<tr>
<td>平成2年6月
傷2</td>
<td>オキシ塩化リン
その他</td>
<td>異常反応</td>
<td>医薬品である塩酸ニカルジピルの試験製造工程において、N-ベンゾイル-α-メチルアミンとオキシ塩化リン（POC₃）を反応させた後、冷却しながらテトラヒドロフラン（THF）とジメチルエチレン（DME）の混合溶剤を滴下していたところ、突然反応器が破裂して大炎が発生した。残留物の分析結果から、反応後の冷却が十分でなく、THFとDMEの混合液の温度も高かったため、THFとPOC₃との異常反応が生じたことが原因と推定された。</td>
</tr>
<tr>
<td>平成3年1月
死2傷1</td>
<td>液体酸素＋有機物</td>
<td>爆発</td>
<td>ICに使用するセラミックスの素剤原料の製造工程において、変化アルミノウム、酸化イットリウムなどとバインダー及びベンゼンを混合したスラリー状のものを液体窒素中に凍結・凝結させたあと、乾燥器で乾燥するためにステンレス製スコップでトレー上に移していたとき、空気中の酸素が凝縮した有機物質に凝縮したためか、衝撃等が着火源となって突然爆発を生じた。</td>
</tr>
<tr>
<td>平成3年6月
死2傷13</td>
<td>酸化物</td>
<td>爆発</td>
<td>脂肪酸メチルエステルスルホン酸の漂白に使用したメタノールを精留塔で回収中に、残存していた酸化水素とメタノールが反応して過酸化物が生成したためか、精留塔内で爆発が生じた。</td>
</tr>
</tbody>
</table>