9. Evaluation of Dust Explosibility by a Testing Method*

by Toei MATSUDA** and Hidenori MATSUI**

Abstract: Testing has been performed by a method for determining dust explosibility, which has been recently adopted by the Association of Powder Process Industry and Engineering in Japan. The test is conducted by a modified Hartmann tube apparatus and provides a measure of minimum explosive concentration, to which explosion violence is suggested to be related. The test results are shown in Table 1 and 2 for fine ceramic powders and carbon related dusts, respectively. The method allows a classification of the explosion violence as severe, moderate and weak according to the minimum explosive concentrations of lower than 100, 100 to 200, and larger than 200 g/m³, respectively. When a sample dust does not establish any self-sustaining flame in the tube at a concentration lower than 500 g/m³, the dust is regarded as non-explosible by the APPIE Method. However, the data acquired in the present tests show that lean limits of flammability for some dusts are more higher than 500 g/m³. Therefore, it should be tested up to more higher dust concentrations, and the other testing method using a large vessel with a powerful ignition should be applied, when a combustible dust is judged as non-explosible in the APPIE method. The test results are also compared with the explosion data obtained in a 30 l spherical test vessel with a chemical ignitor.

Keywords: Dust explosion, Explosibility, Testing method, Hazard assessment

9.1 まえがき

工業プロセス中で扱う物質が、はたして爆発性を有するかどうかを認識しておくことは労働災害を未然に防ぐ上で極めて重要なことであり、これらの認識が欠如すると、まさに思いもかけない爆発に至る例も少なくない。このような物質の爆発・火災危険性の判定は、安全対策を立てること上もその第一歩となるものである。なお、その物質が発火性のもの、危険性のものなどとして法的におかせない場合においては、判定試験より重要な意味を持ち、その判断を間違えれば大きな災害に至ることもある（それには、危険性情報の伝達という問題も含まれるであろうが）。もし、爆発性を有するものと判定されれば、一歩進んでその爆発・火災危険性を測定・評価しておくことが必要になる。このような、物質の火災・爆発危険性の評価は極めて重要であり1)，評価方法に関する種々の規格や技術指針が存在することは周知の通りであり、産業実態に即した国際的な規格の改訂なども今日的な問題として議論されている。

可燃性粉じんの爆発性の判定方法については ISO2)や ASTM3)の規格があるが、最近我が国でも一つの粉じん爆発試験方法（APPIE法）が制定された4)。
一般的に、可燃性粉じんは、可燃性ガスや蒸気の比較して、燃料の塊として存在するため、最小発火エネルギーが大きく、発火しにくい傾向がある。そのため、爆発性の判定もガスや蒸気の試験方法と異なる方法が必要でありそれなりの困難を伴うが、上記のISO規格のように、試験方法が大型化すると労力も費用も大きく、簡易試験方法が望まれることになる。このような産業界からの要求に答えて、わが国の上述の粉じん爆発試験方法が制定されたわけであるが、従来、とくに粉じんの安易に外国規格をそのまま取り入れた我が国の現状からすると、独自の内容をも含む粉じん爆発の試験方法が制定されたことは、粉じん爆発災害の安全対策の上でも大きな進歩といえるであろう。

ところが、同試験方法によってファインセラミックスや炭素製の若干の可燃性粉じんの粉じん爆発性を試験したところ、粉じん爆発性無しと判定される粉じんでも、測定条件によっては爆発性を有するものがあった。そこで本章においては、粉じん爆発の試験条件を変化させた時の実験結果について報告する。

9.2 測定

上記試験方法では、粉じん爆発試験装置として、吹上式試験装置と落下式試験装置が採用されている。ここでは、前者を用いた。同装置は、米国銅山局で開発されたハートマン式粉じん爆発試験装置を基に改良したもので、その概略をFig. 1 に示す。内径70 mm、高さ293 mmで内容積約1.2ℓの円筒ガラス容器内に試料粉じんを分散させて、着火源として火花放電を用い、所定の時間後に着火して爆発性を観察する。爆発の判定は、火花が放電電極の上方へ100 mm以上伝ばした場合で、Fig. 1 において爆発容器の目盛り線を越えた場合である。爆発した場合は、粉じん濃度を変化させて爆発下限濃度を求めめる。爆発性試験は、粉じん濃度の低いほど、爆発性が増加させながら各3回の繰り返し測定で行った（ただし、試験方法では連続5回または10回として規定としている）。濃度は、40 mg/1.2ℓから始め、その2倍ずつ変化させた。3,000 mg/1.2ℓ以上の濃度では、1,000 mg/1.2ℓずつ5,000 mgまで増加させた。爆発ガラス球の頭部は、空気透過性の良い紙フィルタ（十種のパンバー社製 JK ワイパー 2 枚）でカバーしたが、通常、火花との接触によってフィルタは燃え出るので爆発した場合の判定は容易であった。火花放電は、放電間隔6 mmの対向電極間でネオントランス（二次出力15 kV、容量20 mA）によるアーク放電を用いた。

試験に供した試料粉は、炭素（カーボン）粉および市販のファインセラミックス粉である。

9.3 測定結果および考察

Table 1 は、各種ファインセラミックス粉の試験結果を示す。これによると、28 種の試料粉の中で8 種が粉じん爆発性が有りと判定され、その下限濃度は著しく高い。なお、同名化合物でも原子価によって分
<table>
<thead>
<tr>
<th>Ceramic Powders</th>
<th>(formula)</th>
<th>Average particle diameter (μm)</th>
<th>Weight (mg) of powder in the explosion tube (1.2ℓ in volume)</th>
<th>Explosibility</th>
<th>Explosibility in a 30ℓ test vessel*</th>
<th>Agreement between the two test methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>80</td>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td>Titanium Carbide</td>
<td>(TiC)</td>
<td>1.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Vanadium Carbide</td>
<td>(VC)</td>
<td>1.5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Zirconium Carbide</td>
<td>(ZrC)</td>
<td>2.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Niobium Carbide</td>
<td>(NbC)</td>
<td>1.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Molybdenum Carbide</td>
<td>(Mo₂C)</td>
<td>3.4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Tantalum Carbide</td>
<td>(TaC)</td>
<td>2.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Tungsten Carbide</td>
<td>(WC)</td>
<td>0.7</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Titanium Nitride</td>
<td>(TiN)</td>
<td>1.6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Vanadium Nitride</td>
<td>(VN)</td>
<td>6.6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Chromium Nitride</td>
<td>(Cr₂N)</td>
<td>6.0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Zirconium Nitride</td>
<td>(ZrN)</td>
<td>5.8</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Niobium Nitride</td>
<td>(NbN)</td>
<td>7.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Tantalum Nitride</td>
<td>(TaN)</td>
<td>3.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Titanium Boride</td>
<td>(TiB₂)</td>
<td>2.4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Chromium Boride</td>
<td>(CrB)</td>
<td>9.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Zirconium Boride</td>
<td>(ZrB₂)</td>
<td>2.0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Niobium Boride</td>
<td>(NbB₂)</td>
<td>1.6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Molybdenum Boride</td>
<td>(MoB)</td>
<td>4.4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Lanthanum Boride</td>
<td>(LaB₆)</td>
<td>1.6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Tantalum Boride</td>
<td>(TaB₂)</td>
<td>0.9</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Tungsten Boride</td>
<td>(WB)</td>
<td>3.6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Titanium Silicide</td>
<td>(TiSi₂)</td>
<td>3.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Chromium Silicide</td>
<td>(CrSi₂)</td>
<td>3.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Zirconium Silicide</td>
<td>(ZrSi₂)</td>
<td>3.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Niobium Silicide</td>
<td>(NbSi₂)</td>
<td>4.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Molybdenum Silicide</td>
<td>(MoSi₂)</td>
<td>3.9</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Tantalum Silicide</td>
<td>(TaSi₂)</td>
<td>3.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Tungsten Silicide</td>
<td>(WSi₂)</td>
<td>3.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

*With chemical ignitor of 10 kJ calorimetric value; tests in a 30-ℓ spherical explosion test vessel
産業安全研究所特別研究報告 RIIS-SRR-NO.12

子結合の異なる化合物が存在するが、ここでは Table 1 に示した化合物について、以下に及ぶ。炭化水素やケイ化水素では、チタン、ジルコニウム化合物が爆発性有りと判定されるが、ホウ素化合物ではそのいずれもが爆発しなかった。ホウ化物では、クロム化合物ののみが爆発性有りと判定される。塩化物では、チタン化合物は爆発せず、ジルコニウム化合物のみ爆発性を示した。

本報告書中の別報の、これらの金属性化合物の粉じん爆発性は、金属単体の燃焼性および結合相手の原子の燃焼性と大いに関係があると考えられる。ジルコニウムやタンタル、チタンは比較的大きな燃焼熱を持つので、これらの金属単体の粉じん形態では激しい粉じん爆発危険性を示し、これを反映して、ケイ化物ではその三化物とも爆発性が認められる。もっとも、ケイ化物では、ケイ素自体が大きな燃焼熱を有し、酸素結合力が強いことが、これらの爆発性の理由でもあろう。しかし、炭化物ではタンタル、窒化物ではチタンとタンタル、ホウ化物ではジルコニウム、チタン、タンタルのいずれの化合物でも、爆発性を示さず、これらの化合物の爆発性は金属単体の燃焼熱の大きさだけでは説明できない。しかし、ホウ化物では、燃焼熱の比較的中程度の金属クロムを含む一ホウ化クロムだけが、粉じん爆発性を示したことは特筆に値する。金属クロム単体の粉じん爆発は、平均粒径が比較的大きい場合では爆発せず、3μm 程度で初めて爆発するようになることが知られている 5)，このことからも、平均粒径 9.1μm のホウ化クロムが爆発性を示すことは理解できる。クロムよりも燃焼熱の大きい重金属を含む同じ一ホウ化物であるモリブデン化合物は、爆発性を示していない。

いずれにしても、金属の発火には特に電気火花が有効であることが、あるいは関連するかも知れない。ちなみに、米国鉱山局で電気火花を用いて測定したデータでは 7)，チタン、バナジウム、ジルコニウム、クロム、タンタルなどの 74μm 以下の粉じん試料が爆発性を示し、モリブデン、タングステンなどが爆発性を示さなかった。これに対して、二ホウ化物ではこれらの金属の割合が減少するので、金属単体よりもホウ素の燃焼性に次で決定されるべきではない。金属の割合がより大きい六ホウ化ランタンでは爆発性を示さないことから、ホウ素の粉じん爆発性は小さいと思われるが、融点が 2,300℃ と高いものの粉じん爆発性は有る。しかも、ホウ素は燃焼熱が大きくて、ロケット燃料の一つとしても考慮されている。

一方、塩化物での窒素の大分、NOx として放出され、NOx のような生化学的反応に寄与するとは思われないので、チタンやタンタルの塩化物は、ここで測定したよりもさらに高い粉じん濃度では爆発性を示す可能性もあるだろう。炭化物では、タンタル化合物が爆発性を示さなかったが、タンタルの原子量はジルコニウムの約二倍もあり、粉じんとしての分散はより困難になるためとも考えられ、より高濃度では爆発性を示す可能性もある。

Table 1 には、30μm 粉じん爆発試験装置による結果を併記した。これによると、30μm 装置では 28 物質中 6 物質が粉じん爆発性を示さず、30μm 装置では爆発性を示さないセラミックス粉じんは、吹上式試験装置では爆発性を示さないことは確かである。また、30μm 装置で爆発性を示し、吹上式試験装置で爆発性を示さない物質は、炭化物ではニオブ、モリブデン、タンタルの三化合物、塩化物ではチタン、バナジウム、クロムの各化合物、ホウ化物ではチタン、ジルコニウム、ニオブ、ランタン、タンタルの各化合物、ケイ化物では、クロム、ニオブの二化合物となっている。このように比較すると、30μm 装置で爆発しなかった物質は、炭化物以外のタングステン化合物とモリブデン化合物、および塩化ニオブなどに限られるようである。これらの物質でもサブミクロンになれば、粉じん爆発の可能性があるのではないかと思われるくらいである。

二つの試験方法の大きな違いは、着火源にあると思われる。すなわち、吹上式試験装置では、およそ 10J の電気火花を使用するのに対して、30μm 装置では 10 kJ の火炎を着火源として使用する。これらのエネルギーの大小はもちろん、火花放電に絞って火炎ではその作用空間が広がり、より多くの粉じんが加熱されるので着火性が増すと思われる。さらに、主要要因の一つに粉じん雲の乱れがある。乱れの爆発（着火）性に及ぼす影響は、乱れの特性によって異なるものであり、必ずしも明確にされていないわけではない 8)。しかし、粒子が燃料の塊で、その燃焼時間が比較的長いため、乱れによって燃焼が増長されることもあると思われる。粉じん爆発の下限濃度は乱れの増加によって低下する事実は、本特別研究においてもケイ素粉じんについて明らかにした。このようなことから、吹上式試験装置では爆発性を
Table 2 Test results for some carbon dusts

<table>
<thead>
<tr>
<th>Dusts</th>
<th>Av. particle diameter (μm)</th>
<th>Lower limit of explosibility by the APPIE(Japan) method (g/m³)</th>
<th>Maximum explosion pressure (bar)</th>
<th>K_{st} (bar·m/s)</th>
<th>Time to peak pressure (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: (volatile 9 - 10%)</td>
<td>24</td>
<td>ca. 800¹</td>
<td>6.4</td>
<td>95</td>
<td>47</td>
</tr>
<tr>
<td>B: (volatile 9 - 10%)</td>
<td>20</td>
<td>ca. 800**</td>
<td>6.4</td>
<td>90</td>
<td>38</td>
</tr>
<tr>
<td>C: (volatile 14 - 15%)</td>
<td>4.7</td>
<td>no-explodable up to 4,000</td>
<td>7.1</td>
<td>122</td>
<td>42</td>
</tr>
<tr>
<td>D: (volatile 36 - 37%)</td>
<td>6.5</td>
<td>ca. 4.</td>
<td>7.2</td>
<td>191</td>
<td>32</td>
</tr>
<tr>
<td>Soot from decomposed acetylen gas</td>
<td>ca. 0.4</td>
<td>no-explodable up to 1,000</td>
<td>6.6</td>
<td>62</td>
<td>58</td>
</tr>
</tbody>
</table>

*) Weak explosion, **) Very weak explosion, +) Measured in a 30 ℓ spherical test vessel

示さない試料も、30ℓ試験装置では爆発性を示すのではないかと思われる。

しかし、上述のように、金属の原子量との単純な関連を見いただすことは困難のように、どのような規則性で爆発性が現れるのかは必ずしも明かではない。

粉じん爆発現象に、粉じんの平均粒径や粒子密度、分散の度合や流体力学的な乱れの要因などが関係し、粉の化学構造からだけでその爆発性を明確に判定できない場合もある。

以上のようにして実験に使用した腐食物、窒素物、水素化物およびメチアルアルコールによる粉じんが存在し、その爆発性を示す粉じんの爆発下限濃度は著しく高く、その最低値はケイ化ジルコニウムの約 500 g/m³で、他是いずれも 1,000 g/m³を越える。

Table 3 Assessment of dust explosibility by Test Method of APPIE in Japan

<table>
<thead>
<tr>
<th>Lower limits of explosibility [g/m³]</th>
<th>Explosibility</th>
</tr>
</thead>
<tbody>
<tr>
<td><100</td>
<td>Severe</td>
</tr>
<tr>
<td>100 ~ 200</td>
<td>Moderate</td>
</tr>
<tr>
<td>200 <</td>
<td>Low</td>
</tr>
</tbody>
</table>

明かであろう。

上記 APPIE 試験法4)では見掛けの爆発下限濃度の測定結果から、下限濃度 100 以下、100 〜 200、200 g/m³以上に対応して爆発性をそれぞれ高、中、低に評価する（Table 3）。さらに、「粉じん雲が 500 g/m³の濃度で爆発しない場合は、不燃すなわち爆発性がないものと評価する。簡便に爆発性の評価を行うには、粉じん濃度を100および200 g/m³として、試験をすればよい。」となっている。

これに従うと、Table 1 のファインセラミック粉じんはどれも爆発性がないものと評価される。一般に、金属の燃焼における量論組成は、金属元素の原子量が大きいほど、高濃度側に移る。量論組成と粉じん爆発の下限濃度は必ずしも関連しないが、下限濃度での限界火炎温度を考慮しても、金属もしくは金属化合物の下限濃度は、一般にかなり大きくなることは容易に予想される。

従って、下限濃度の測定結果から爆発性を判定する場合、重金属などを含む粉じんについては、より高い粉じん濃度まで試験を行う必要がある。また、吹上式試験装置で爆発しない試料は、より効率的な着火
9.4 結語

（社）日本粉体工業技術協会の定める粉じん爆発性試験法によって、若干の炭素粉や金属化合物の爆発下限濃度を測定したところ、同試験法の参考項に記述してある試験上端粉じん濃度 500 g/m³よりも高い濃度の下限濃度を示す粉じんがあることが分かった。これらの結果から、原子量が比較的大きい元素を含む化合物で粒径が小さい可燃性粉体の粉じん爆発性については、慎重に判定する必要がある。さらに、これらの試験において爆発しない可燃性粉じんの爆発性は、再検討する必要がある。

謝辞

爆発試験を実施して戴いた（社）産業安全技術協会柳生昭三氏および稲村俊男氏に、ここに記して深く感謝申し上げます。

参考文献