Ignition Characteristics of Zirconium Dust*

by Toei MATSUDA** and Masaaki YASHIMA**

Abstract: Zirconium metal dust is pyrophoric, highly combustible in its dry state, and has a great affinity for oxygen at elevated temperatures. The wide use of zirconium has been found in industry and the most important use of the material is in nuclear reactors for cladding fuel rods. It has been considered that fire and explosion risks of zircaloy (98 wt. % Zr) may be expected when cutting nuclear fuel rods in a reprocessing plant.

Zirconium sample dusts, prepared by dehydriding process from hydrogen-absorbed metal zirconium, have been used to examine some ignition sensitivity properties.

A thermo-gravitational analysis was made in air with variation of heating rates. The sample dusts showed S-character type weight increasing curves to the final oxide product, but when the heating rate was mostly higher, a small ignition was observed in the oxidation process. The ignition seems to be caused by oxidation of the upper layer of the dust in an open cell, following that of the lower part of the dust. Accordingly, such a thermal analysis using micro-quantity of sample dust in the capsule-type cell wouldn't be appropriate to evaluate actual ignition hazards of pyrophoric metal dusts. For layered dust, macroscopic ignition temperatures were then measured on a hot plate with a variation of depth of layer. The data have been interpreted with a thermal theory.

It is found in the preceding literature that the ignition of a dust cloud of zirconium is capable to occur at a room temperature. This fact gives us a question whether a quiescent dust cloud of zirconium will be ignited spontaneously at normal temperature. Using a Godbert-Greenwald furnace apparatus, ignition temperatures for dust clouds of zirconium were measured in air for water-contained sample dusts and for mixtures with zirconium oxide dust, respectively. Effect of oxygen contents on the ignition temperature was also studied in nitrogen-diluted atmospheres. All these suppressing factors of water, the inactive dust (zirconium oxide) and nitrogen abruptly raise the ignition temperatures from room temperature to higher temperatures. From these findings, it was estimated that there are two ignition modes involved in the ignition of zirconium dust clouds. After successful ignition tests of a dust heap of small quantity by a blast of compressed air, it is concluded that ignition of zirconium cloud at room temperatures is caused by friction in the furnace apparatus and that thermal ignition of the dust cloud could occur at a temperature of 300 to 400°C in air. As far as the furnace apparatus is used for the measurement of ignition temperature for a dust cloud, the ignition temperature could be found to be a room temperature. Dry zirconium dust is very sensitive to a spark, for ignition energies both for a cloud and a layer are too low, in accordance with previous values. Although the dust has a comparatively low ignition temperature, it will not ignite spontaneously at a room temperature.

*平成9年11月27日第30回安全工学研究発表会、他において一部発表した。
**化学安全研究部 Chemical Safety Research Division
temperature for a form of dust clouds.

Keywords: Zircaloy, Zirconium, Dust, Ignition, Ignition temperature

1. まえがき

私が国の原子力発電が実用化されてから約35年ほど経つが、核燃料再処理工場での使用済み核燃料の処理が大きな問題となっています。その処理の一つとして、使用済燃料棒を切断して圧縮滅容化を図る方法がある。しかし、プラントごとにおいても汚染された固体廃棄物をジルコロイ製被覆管内で収納されているのが、その被覆管の切断時にはジルコロイ粉じんが発生し、その後の処理過程で同粉じんの火災・発爆危険性を考慮する必要がある。ジルコロイ成分の98 wt.%以上はジルコニウム（Zr)で、Zrは燃焼試験も大きく発火性的極めて高い危険な金属粉として知られている1)。

Hattwigら3)は、ジルコロイ切削粉の放射線照射試料と照射しない試料の発火・発爆特性を検討し、いずれも照射された試料の危険性が高いと報告した。その原因として、照射による材料劣化で細粉化が生じることを指摘している。

一方、ジルコニウムは原子力以外の産業においても重要な工業材料であり、その発火特性に関する研究も多いが、中村ら4)の粒子の熱酸化過程を詳細に検討し、大部分の金属粉がそうであるようにZrの酸化は室温でも生じることを示し、黒田ら5)は積算粉の発火エネルギーが極めて小さいことを報告した。ところが、Zr粉じんの発火特性を文献で調べると、浮遊粉じんの発火温度は20°C、堆積粉のそれは190°Cとなっている6)。しかし、発火試験の観点からすると、発火条件のより健全な堆積状態での発火温度より低い値を示すことのほうが通例である。Zr粉じんではこれと逆であり、浮遊粉じんが室温状態にあるだけで発火するかという疑問も生じる。

以上の通り、本報では、模擬ジルコロイとして水素吸収Zr由来で微細なZr転移粉末を成形し、その浮遊状および堆積状のZr粉じんの発火特性を新たに測定することによって、その危険特性並びに発火機構の一端を明らかにすることにした。

2. 実験

2.1 粉じん試料

ジルコロイ切削粉を模擬する目的で、Zr試料は、金属ジルコニウムに水素を吸収させて細粉化したものと水素含有量30 ppm以下まで脱水素処理して製造したドライスラブで、Zr(標準試料)とZr(Oxide)、Zr(標準試料)とZr(標準試料)の粒子をFig. 1 Particle size distributions of zirconium and zirconium oxide powders usedジルコニウム（細粉及び標準）及び酸化ジルコニウムの粒子

たもので、粒径の違いによって、標準試料と細粉試料の二種類を使用した。電子顕微鏡写真によると、いずれの試料も大きい塊状粒子表面にかなりの細粒が付着していることが観察される。試料の粒子径分布は、乾式のレーザー回折散乱式粒度分布測定器（Malvern社製MS64)によって測定した。この場合の乾式では、乾燥空気中に粉体試料を分散する方式で、実際の浮遊粉じんの状態で粒子径を測定することができると、Zr試料では、5 MPa（G[ガージ圧])の乾燥空気流を使用するので、気流中で発爆することが懸念される。このような発火を避けるため、Zr試料に不燃性の酸化Zrを混合して（混合率：50,50重量％）、混合物の粒子径分布を測定した。別に測定した酸化Zr単独の粒子径分布のパラメータを、混合物のそれから差し引くことによって、Zr試料の粒子径分布を求めた。酸化Zrは、後述の発火試験において、酸化物の影響を検討するために使用した。このようにして推定したZr標準試料及び細粉試料の粒子径分布をFig. 1に示す。Zr試料の粒子径分布は、より、似ている放射線照射ジルコロイ切断粉のそれよりも細かく5)、模擬ジルコロイファインとして使用できる。各試料の3回測定平均の中心径（メジアン径）Dv,50は、それぞれ、標準試料：24.0±0.4 μm、細粉試料：9.4±0.3 μm、酸化Zr：7.1±0.3 μmであった。

2.2 試験装置

浮遊粉じんの発火温度を、IEC防爆電気機器粉じん防爆の測定法7)等に記載の垂直ガラス管（長さ21.6
cm、内径 3.7 cm）を電気炉で加熱する Godbert -Greenwald 方式の改良型発火温度測定装置を使用した。試料粉末は、容量 460 cm³の空気貯槽（0.3 MPa まで加圧可）の圧縮空気で分散する。また、最小発火エネルギーの測定は、インダクタンス 1 mH を有する容量放電回路及び吹き上げ式粉じん爆発試験装置からなる市販の簡易測定装置（MIKE 3）を使用して求めた。

一方、堆積層の発火温度は、熱重量分析（TG、理学電機（株）製標準熱天秤装置）および金属板からなる加熱表面を一定温度に加熱保持し、その上に直径 10 cm の粉体層形成リングを置き、その中の試料の発火の有無を観察する試験法に従って測定した。また、堆積層の最小発火エネルギーの測定には、アマノ（株）製測定装置（MIES-10）を使用した。任意の厚さの粉じん層上に対向電極が触れるように配置し、電気火花をとる。ここでは、7×5×2 cm のアクリル板製の容器に堆積させて測定した。

3. 実験結果及び考察

3.1 堆積粉昇温試験

（a）標準試料

昇温速度（5, 10, 20, 30, 40°C/min.）を変化させ、室温から 1,000°Cまで加熱して、標準試料の発熱量変化（TG）を測定した。それによると、いずれの昇温速度においても、200～300°C台から S 字形に次第に重量が増加して（Fig. 2 参照）、900～1,000°Cの範囲のある温度ではほぼ飽和値に到達する。詳しく見ると、重量増加開始温度あるいは重量増加停止温度は、昇温速度によって異なる、昇温速度があらかじめ試料量との有意性を見いだすことは困難であった。しかし、試料量が比較的多い場合、同一昇温速度においては重量增加開始温度はより低い値となる傾向がある。試料の重量増加は、空気酸化によって起こるとすれば、凹型試料容器に入れた試料層表面から酸化されて次第に層内部へ反応が進行していくので、試料量が多ければ、温度によっては試料層の厚み方向で反応段階が異なることが考えられる。この場合は、十分な高温（1,000°C）まで昇温しているので、用いた試料量では、ほぼ完全酸化されるようである。

一方、加熱速度が 40°C/min.において、場合によっては昇温途中で小発火する場合があった。この発火は、通常二段階の急激な重量増加によって判定する。すなわち、堆積層の表面部分だけが燃えて一段落し、さらに高温でその下層の試料が急激に燃焼（発火）するというものであった。試料層が凹状ガラス容器に充てんされているので、試料全体が一気に燃えるまでは至らなかったようである。しかし、50°C/min.以上で加熱すると、発熱速度が増えるので、試料は一気に発火、燃焼してしまう、これ以上の急激加熱条件で試験を行うことはできなかった。Table 1 に繰り返し試験を行った場合のデータをまとめた。

昇温後の試料の色彩は、いずれの場合もわずかにカーキ色を帯びた白色である。また、元の試料に対する重量増加率を求めると 30～35%であり、ZrO₂/Zr の理論重量比（30.58）に近い。これらのことから、この場合の生成物は完全酸化物 ZrO₂が大部分であり、その他として ZrN に部分酸化物を含もするものと考えられる。Zr の金属粉末酸化物の容積比は 1.56 であるが、かき密密度が 3～4 で大きいため、試料量が多くと、試験用試料容器から生成物が溢れるようになることがあった。なお、Zr 粉の TG-DTA によって酸化開始温度を求めた報告4によると、290°Cとなっているのが、ここでの重量増加開始温度の最低値は、242°Cであった。試料の量、形態によっては、若干変動する可能性がある。

Zr 粉の発火危険を避けるため、水中保存する場合がある。そこで、水分を含む Zr 試料の TG を同様にして測定したが、100°C以上で水はほとんど蒸発してしまい、重量変化パターンで見る限りその後の

| Table 1 Data of thermal gravitational analysis for standard sample dust. |
|---|---|---|---|
| Heating rate (°C/min) | On-set temperature of weight gain (°C) | Weight of sample dust (mg) | Ratio of weight gain (wt.%) |
| 5 | 322 | 12.35 | 32.0 |
| 5 | 282 | 12.22 | 33.1 |
| 10 | 281 | 16.71 | 30.7 |
| 10 | 280 | 17.11 | 30.7 |
| 10 | 242 | 17.42 | 34.4 |
| 20 | 304 | 11.97 | 39.3 |
| 20 | 357 | 11.24 | 34.9 |
| 20 | 270 | 12.54 | 34.6 |
| 20 | 340 | 12.39 | 26.0 |
| 30 | 267 | 11.49 | 32.8 |
| 30 | 325 | 10.37 | 35.6 |
| 30 | 250 | 13.02 | 34.9 |
| 40" | 257 | 26.69 | - |
| 40 | 302 | 7.42 | 34.2 |
| 40" | 244 | 18.13 | - |

(1) Small ignition at 438°C, (2) Small ignitions at 467°C and 644°C
酸化反応にはほとんど影響がなかった。すなわち、水と金属粉を単に混合しただけで、水の沸点を超えれば、試料と水の接触がなくなるので、反応は起きないようである。

(b) 細粉試料

昇温速度を変化させて細粉試料を加熱した場合の TG 曲線の例を Fig. 2 に、重量増加開始温度および試料増加率を Table 2 にまとめたで示す。これらの結果は、いずれも標準試料の場合と同様の結果で、最低の重量増加開始温度も 230℃で標準試料の場合と大きな差はみられない。しかし、試験回数は限られているが、昇温速度が 30℃/min. において、昇温途中で小発火が生じたことは、標準試料の場合と唯一異なる点である。昇温速度が 35℃/min. において、2 回の小発火を生じた場合の TG 曲線を、Fig. 2 に示してある。細粉試料の方が酸化されやすいことは、容易に予想できるが、標準試料にも細粉試料と同様の粒子が多数含まれていることから、この両試料では、重量増加開始温度に大きな差が見いだされなかった理由かもしれない。すなわち、より小さな粒子径の粒子が発火のイニシエーターとなることが考えられる。

一定温度に、長時間（5 時間）堆積試料（<20 mg）を保持した場合の最低重量増加開始温度は、標準試料で 220℃、細粉試料で 190℃であった。これらデータに生成物層内拡散律速式を適用して、任意の加熱保持時間における重量増加開始温度を求めることができ、長時間保持するほど低い温度で発熟するようになる。

以上のように、TG 分析による金属粉の試料温度の評価には、試料容器、試料量、加熱速度、加熱時間などの点で問題がある。特に、試料粉に形状及び粒子径

<table>
<thead>
<tr>
<th>Heating rate (°C/min)</th>
<th>On-set temperature of weight gain (°C)</th>
<th>Weight of sample dust (mg)</th>
<th>Ratio of weight gain (wt.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>281</td>
<td>11.32</td>
<td>34.5</td>
</tr>
<tr>
<td>5</td>
<td>263</td>
<td>15.40</td>
<td>34.2</td>
</tr>
<tr>
<td>10</td>
<td>309</td>
<td>9.72</td>
<td>33.8</td>
</tr>
<tr>
<td>10</td>
<td>266</td>
<td>10.68</td>
<td>33.2</td>
</tr>
<tr>
<td>15</td>
<td>280</td>
<td>9.73</td>
<td>33.2</td>
</tr>
<tr>
<td>15</td>
<td>230</td>
<td>15.43</td>
<td>33.6</td>
</tr>
<tr>
<td>20</td>
<td>286</td>
<td>10.66</td>
<td>33.5</td>
</tr>
<tr>
<td>20</td>
<td>256</td>
<td>11.85</td>
<td>33.8</td>
</tr>
<tr>
<td>25</td>
<td>275</td>
<td>10.29</td>
<td>33.9</td>
</tr>
<tr>
<td>25</td>
<td>269</td>
<td>7.84</td>
<td>32.9</td>
</tr>
<tr>
<td>30°</td>
<td>230</td>
<td>10.64</td>
<td>34.1</td>
</tr>
<tr>
<td>35°</td>
<td>258</td>
<td>15.01</td>
<td>34.6</td>
</tr>
</tbody>
</table>

*1) Small ignitions at 460℃ and 800℃ during heating-up.
*2) Small ignitions at 415℃ and 576℃ during heating-up

の分布があるので、数 10 mg 以下のミクロ量での測定では十分でないと考え、以下に数 10 g 以上のマクロ量での測定を行うことにした。

3.2 加熱表面上における粉体層の発火温度

一般に、粉体層の発火は酸化反応による発熟速度と周囲への放熱速度のバランスによって決定されるという発火理論が、よく知られている。固体（粉体）内部において温度分布がある場合、この理論は、発火限界における発熟速度と放熱速度の相対比を表す Frank-Kamenetskii 数 \(\alpha \) によって代表される以下の式で表される。

\[
\alpha = \frac{\Delta H \cdot A \exp \left(-\frac{E}{RT_x}\right)}{(A \cdot \frac{R T_x^2}{E})}
\]

ただし、\(A \): ゼロ次反応の頻度因子、\(E \): 見かけの活性化エネルギー、\(\Delta H \): モル反応熱、\(r \): 容器または物質の半径、\(\lambda \): 熱伝導率、\(T_x \): 発火限界温度 (K)、\(R \): ガス定数とする。加熱表面が無限平面上、その上に粉体層が蓄積している場合に対する \(\alpha \) は理論上 0.88 となり、発熟速度よりも粉体層表面からの放熱速度が勝ることを示す。

このような加熱表面上の粉体の発火温度は、実用的にも重要であり、粉じん防爆電気機器の表面温度を規制する必要から、その測定法が制定されている。ここでは測定法で定める粉体層の厚み (5 mm) 以外にも、層厚 10, 15, 20 mm において発火温度を測定し、
活性化エネルギーを求めた*。測定温度は、15℃以上と定められているので、測定は15〜20℃において行った。発火の場合は、ミクロ試料の TG 試験とは異なり試料数が多いので発熱、発光ともに大きく極めて危険である。そこで、燃焼帯が層表面全体に広がる前にある箇所での発光が認められるやいなや直ちに前もって準備した乾燥砂で被覆して消火するようにした。しかしこの発火が起きると、乾燥砂で被覆後も急に冷却しないので、一部の砂を取り除いて空気と接触させると再発火する危険性があった。

Fig. 3 は、標準試料及び酸化 Zr 混合粉末（酸化 Zr 混合率 7, 15 及び 25 wt.%）の層厚みと発火温度の測定結果を示す。さらに、測定装置は所定的かさがあり無限平板にはほど遠いが、上記の熱発火理論の関係式から得られる層厚みと発火温度の関係を点線でプロットしてある。標準試料の層厚み 5 mm における発火温度は 272℃であるが、当然ながら層の厚みが増すと蓄熱条件が悪くなるので、（限界）発火温度は次第に低下することになる。なお、Fig. 4 は、堆積層発火温度に及ぼす酸化 Zr の混合率の影響を示す。混合率が高いほど発火温度が高くなりますに直線関係にあることから、酸化物は化学的に不活性で、熟的な吸熱体として単に作用するためであると考えられる。

3.3 浮遊粉じんの発火温度

(a) 窒素希釈雰囲気の影響

浮遊粉じんの発火温度は、粉じん濃度に依存するの

![Fig. 3 Relationship between ignition temperature and depth of dust layer. 粉じん層厚みと発火温度の関係](image)

Fig. 4 Effect of zirconium oxide ratio of the mixture on ignition temperature of dust layer on a hot plate. 層状粉末の発火温度に及ぼす酸化物の影響

で、濃度を種々変化させることが必要であるが、発火の場合には激しい発火に至るので、装置の損傷及び実験の安全性を考慮して、ここでは充てん試料量を 0.9 g 以下に抑えることにした。また、発火を抑制するため分散空気圧力はできるだけ低くする必要があったが、試料ホルダー内の充てん試料を全体分散できる最低空気圧力 80 kPa (G) に設定して測定した。しかし、空気中での測定では、300℃付近から炉温度を次第に低下させても大きな音響を伴う爆発炎（発光）を観察され、標準試料の粉じんでは特に室内においても発火することが判った。そこで、空気貯槽に窒素を混入して、窒素希釈による氮酸濃度の影響を検討したところ、Fig. 5 のような結果が得られた。ただし、試料ホルダーに試料を充てんする場合、ホルダーの開放に伴って底の空気が侵入するので、酸素濃度約 1 vol.% 以下では必ずしも高い発火温度とはならなかったが、これは測定上の制限によるものである。堆積粉であれば、高温窒素中で窒化物を形成する可能性が考えられるが、浮遊粉じんは高濃度に短時間触れてでも発火しないと考えられるので、酸素濃度 0 % 付近では、曲線は断面に立ち上がるという予想される。

Fig. 5 によると、酸素濃度と発火温度の関係は必ずしも単純なものではない。約 430℃と室温付近に小さな水平部（鞍部）があり、その中間では発火温度は酸素濃度によって急激に変化する。通常の粉じんの発火温度は、酸素濃度の増加に伴って、次第に低くなる場合が多い。それ故、Zr 浮遊粉じんでは高温室と室温

*Frank-Kamenetskii数を表す式から、

\[\ln \left(\frac{\tau}{\gamma} \right) \approx \frac{\Delta H \cdot \lambda E}{\lambda R} \cdot \frac{1}{\tau} \]

したがって、

\[\ln \left(\frac{\tau}{\gamma} \right) \approx \frac{\Delta H \cdot \lambda E}{\lambda R} \]

の関係は見かけの活性化エネルギー E に対応する。両者のプロットから求めたそれは、E = 170.8 kJ/mol であった。
では発火機構が異なるように思うわれる。

(b) 水分含有試料－水分の影響

次に、標準試料の水分含有量が、5、10 及び 15 wt.%の場合の空気中における浮遊粉じんの発火温度を測定した。水分含有量が多いとスラッジになって浮遊粉じんにはなりえないで、15 wt.%あたりが最大含有量であった。測定結果を Fig. 6 に示す。水分含有試料は、水分によって凝集体となっているが、細分化された凝集体のまま気中に放出されるようである。また、水分量が多いと凝集体のまま直ぐに落下する場合が多いようである。発火の際は、激しい爆発音を発する場合と外れ閃光のみの場合があった。

図によると、測定範囲内では水分量にほど比例して発火温度が高くなり、その直線の外挿から乾燥物の場合の発火温度は、330°Cと推定される。しかし、上記のように、乾燥粉試料は室温において圧縮空気により分散されて発火するという特異性があるため、発火温度の変化は急激な上昇を示すことになる。以上、水分量が多い試料ほど発火温度は高くなるという結果から、特に水分が発火に化学的な影響を及ぼすことはなく、燃焼管に触れて凝集体試料の水分が蒸発した乾燥粉が発火するようになると考えられる。大きな爆発音の発生から推測して、気化した水分は、発火によって燃焼した金属粒子と接触して水素を発生させる反応を起こす場合もあり得ると思われる。

(c) 酸化ジルコニームの混合率の影響

同様にして、標準 Zr 試料に酸化 Zr を混合した混合物の浮遊粉じんの発火温度を測定した。Fig. 7 に結果を示す。混合圧が 90 wt.%の場合でもなお発火することは意味深いもので、50 wt.%の時の発火温度は 400°Cで、40 wt.%以下になると急に低下して室温で発火するようになる。この場合も、明らかに発火温度の急激な変化は、特異的である。この場合、酸化 Zr は Zr の発火に関しては不活性と考えられる。

以上述べたような酸素濃度、水分含有量及び酸化 Zr 混合率をそれぞれ変化させた場合の浮遊粉じんの発火温度の変化から、高温雰囲気下での発火は熱的酸化反応によるもので、一方、室温では Leuschke らが報告しているように粉体試料の分散時等の摂動などによって発火するのではないかと考えられる。そこで、圧縮空気を試料粉に噴射させる装置で、粉体粉を分散した場合の発火を観察してこれを確認することにした。

Photo. 1 は、同装置による Zr 粉じんの発火の状況を示す。すなわち、少量の試料粉（約 10 g程度）
ジルコニウム粉じんの発火特性

4. 結 語

発火性金属粉の一つであるジルコニウムの発火特性を、水素吸収金属から製造した脱水素試料粉を用いて検討し、次のような結果を得た。

(1) 空気中における堆積粉（ミクロ量）の熱重量増加開始温度の最低値は、昇温速度30°C/min.以下の場合、標準試料では242°Cであった。昇温温度40°C/min.以上では、昇温途中で発火を起こす。堆積粉の層積量増加開始温度はこれより僅かに低く224°Cで、昇温速度30°C/min.で発火する。いずれも、1,000°Cに昇温されるまでにほとんど完全酸化される。

(2) 一定温度に加熱した金属表面上に標準試料の堆積粉（マクロ量）を保持した場合の発火温度は、堆積粉の厚みに依存して低下するが、5 mm厚みの場合272°C、20 mm厚みの場合233°Cであった。加熱板上の堆積粉に酸化物が混入すると、混合割合が増すほどに発火温度は高くなるが、その温度は発火熱理論によって予測できる。

(3) 空気中における浮遊粉じんの発火温度は、IECなどで定める測定法によると室温になる。室温で発火するのは試料を空気圧で分散するため、その過程でじんじが酸素発火する結果と考えられる。したがって、強制的な分散を強化すれば試料を浮遊させることができれば、発火温度はかなり高い温度（300~400°C）で熟酸化発火（高温における表面酸化反応の加速）を生じることが考えられる。

(4) 窒素希釈雰囲気中における浮遊粉じんの発火温度は、酸素濃度大気のそれに近づくにつれ熱伝導度を示す。これは、上記の機関と関連する。

(5) 浮遊粉じんの発火温度は、試験範囲の15 wt.%水分含有量では、300°C台で水分量に比例して高く、乾燥粉じんの場合は、上記のように急激に室温に下がる。

(6) ジルコニウム粉に酸化ジルコニウム粉を混合した浮遊粉じんの発火温度は、酸化ジルコニウムの重量混合割合が40%以下であれば室温であるが、50%では急に上昇し400°C以上である。90%でも、なお発火する。

(7) 浮遊粉じんの最小発火エネルギーは、ここで使用した測定装置（MIKE 3）で測定可能なエネルギーの最小値（<1 mJ）を示した。堆積粉の最小発火エネルギーは、同じく、測定装置で測定可能な最小値0.8 mJで発火した。
謝辞
金属試料粉並びに技術資料の提供を受けた（株）神戸製鋼所並びにコベルコ科研（株）関係各位に、ここに記して深く感謝致します。

参考文献
1) L. Bretherick, 吉田信男, 田村昌三監修, 危険物ハンドブック, 丸善 (1987)
2) NFPA 482, Production, Processing, Handling and Storage of Zirconium, National Fire Protection Association, Boston, USA (1987)
4) 中村英嗣, 石松毅志, 原泰毅, 工業火薬, 51 (6), p.383 (1990)
5) 黒田英司, 工業火薬, 55 (6), p.251 (1994)
8) M.M. Raftery, Explosibility tests for industrial dusts, Fire Research Technical Paper No.21 (1968)

（平成12年1月5日受理）