Research Reports of the National Institute of Industrial Safety, NIIS-RR-98 (1999) UDC 614.833:614.841.1:536.46

水を噴霧した場合の管内伝ば火炎の消炎挙動*

八島正明**

Quenching behavior of a propagating flame in a duct with water sprays

by Masaaki YASHIMA**

Abstract: An experimental study on extinction limits of premixed flame has been performed in order to develop a new explosion suppression system applied to gas and dust explosions. This kind of study on explosion suppression system started from the later term of World WarII in the U.K. Since then many practical studies have been conducted to suppress gas or dust explosions in coal mines and chemical engineering plants. However, they have not been clarified how the propagating flame in a duct is quenched by suppressant agents dynamically. Elucidating the quenching mechanisms by suppressant agents is indispensable to make a suppression model and to develop the system.

The experiment was conducted in a vertical duct of $0.2m \times 0.2m$ cross section and 2m long, with both-ends-opened, top-end-closed and bottom-end-opened. The behavior of the flame propagating in the middle of the duct was observed through two glass plates of 0.38m long serving as duct walls. Methane - air and LPgas(propane 98.1% vol.) - air premixed gas were used and water was used as suppressant agent, which was harmless and could be obtained with ease. The results are as follows.

- (1) It is found that the propagating flame is laminar state without water sprays, and when the flame can not be quenched with the sprays, the flame front is disturbed and propagating velocity increases.
- (2) When the case of flame is quenched by the sprays, it does not extinguish instantaneously; it takes some time to be extinguished.

(3) The optimizing conditions of the water sprays effect on the flame quenching, are examined in various concentrations of the mixture. In case of both - ends - opened,

- $\phi = 0.7; \ D_{SMD} = 175 \ \mu \text{m} \ (D_{AV} = 92 \ \mu \text{m}); \ T_i \le 660 \ \text{ms} \dagger \ (V_f \le 3.7 \ \text{m/s}),$ $q_w \ge 108 \ \text{mg/cm}^2 s, \ T_D \ge 280 \ \text{ms}.$
 - ; $D_{SMD} = 293 \ \mu \text{m} \ (D_{AV} = 172 \ \mu m); \ T_i \le 660 \ \text{ms} \dagger \ (V_f \le 3.7 \ \text{m/s}), \ q_w \ge 144 \ \text{mg/cm}^2 s, T_D \ge 850 \ \text{ms}.$

 $\dagger T_i = 660$ ms is the maximum value in the present condition.

 $\phi = 1.0; \ D_{SMD} = 215 \ \mu \text{m} \ (D_{AV} = 97 \ \mu \text{m}); \ T_i \leq 260 \ \text{ms} \ (V_f \leq 2.9 \ m/s), \ q_w \geq 135 \ \text{mg/cm}^2 s, T_D \geq 500 \ \text{ms}.$

; $D_{SMD} = 235 \ \mu \text{m} \ (D_{AV} = 130 \ \mu \text{m}); \ T_i \leq 210 \ \text{ms} \ (V_f \leq 2.4 \ m/s), q_w \geq 144 \ \text{mg/cm}^2 s, T_D \geq 850 \ \text{ms}.$

Where ϕ Equivalence ratio, T_i Spray start time from ignition, V_f Flame Propagating velocity, D_{SMD} Sauter mean diameter, D_{AV} Arithmetic mean diameter, q_w Water flux of sprays (mean), T_D Duration of sprays:

^{*} 平成 9 年 11 月 28 日, 第 30 回安全工学研究発表会, 平成 10 年 5 月 20 日, 日本火災学会研究発表会, 平成 10 年 12 月 3 日, 第 31 回安全工学研究発表会において,本研究の一部について各々発表した。

^{**}化学安全研究部 Chemical Safety Research Division

Keywords; Premixed flame, Flame propagation, Extinction, Quenching, Explosion suppression, Water, Suppressant agent, Extinguisher, LPG

1. まえがき

水は、古くから消火剤として利用されてきた。これ は、毒性がなく、安価で大量に入手でき、冷却効果が 大きいといった長所があるためである。火災に対する 水を使った消火法としては、ホースからのいわゆる棒 状注水やスプリンクラからの噴霧があり、効果的な消 火実現のためにこれまで多くの研究がおこなわれてき た^{1-11,27})。

火災において見られる火炎は、拡散火炎であること が多いが、ガス爆発に見られる伝ば性を有する火炎は 予混合火炎であることがほとんどである²⁶⁻²⁸⁾。火災の 水消火の基礎研究として古くから調べられてきたのは、 拡散火炎と水滴群の相互作用である^{2-7,10)}。本研究では、 爆発抑制の目的で水の利用を検討しているが、そのた めには、予混合火炎と水滴群の相互作用を予め把握す る必要がある。このことに関連する水を使ったガス爆 発抑制あるいは予混合火炎の消炎については、これま でにいくつかの研究がなされている^{1,12-22,25,31)}。

Sapko ら¹²⁾は、内径 15.5 cm、長さ 1m のアクリル 円管を用い,メタン-空気予混合火炎について消炎実 験をおこなった。研究では、着火前に予め雰囲気に水 噴霧(蒸気)を混入させておく不活性化実験と伝ばす る火炎に水を噴霧する実験をおこない、消炎に及ぼす 水滴径,水の濃度などが調べられた。van Wingerden ら¹³⁻¹⁴⁾は、水噴霧の停止後に火炎を伝ばさせた実験を おこない、消炎しない場合には、火炎が乱れ、火炎の 伝ば速度が増加するという結果を得た。彼らの研究で の特徴は、火炎伝ば速度が大きく、それに伴う気流が 大きい場合には、粒径が大きい水滴は分裂 (break up) するので、消炎効果が高くなることを示したことであ る。Wolfe と DeSipio¹⁵⁾は、水滴径を小さくするために 二流体ノズルを用い、一流体ノズルよりも少ない水量 で消炎できるという結果を得た。Lutzら¹⁶⁾は、水素-空気予混合火炎と単一水滴の相互作用を一次元モデル による数値シミュレーションにより調べた。Moore¹⁹⁾ は、消火剤噴霧式の爆発抑制装置に関する研究をおこ なっている。その研究では、30気圧以上の高圧で多量 の水を球形容器内(1m3)に放散し、容器内の圧力変化 から抑制の効果が検討され、消火剤としての水の効果 が調べられた。この場合には、消火が達成できたこと よりも、圧力上昇を抑えることができたことのほうが 重要である。一流体ノズルを用いる場合には、高圧で 噴霧することにより水滴の微細化がはかられるが、そ

れとともに誘起される周囲の流れも大きくなる。従っ て、その火炎が水滴群によって消炎しているのか、高 速の流れによって吹き飛び、消炎に至るのかが不明瞭 である。爆発抑制装置に組み込む消火剤としての水は、 燃焼のごく初期段階を除き、その消火効果は小さいと されている^{1,19,21)}。

ガス爆発抑制のために水で消火をおこなう場合には, 予め雰囲気を燃焼下限界以下になるように不活性にし ておくのではなく、何らかの着火源により燃焼が開始 し、火炎が伝ばして初めて水を噴霧することになる。予 混合火炎の消炎に及ぼす水 (蒸気) 添加量は、燃焼限 界の測定とともに既に調べられている²²⁾。しかし、燃 焼開始後に水を噴霧する場合には、水滴が蒸発するま でに時間を要するので、水蒸気を予め添加した消炎の 結果とは異なるはずである。また、噴霧によって場に 水滴を導入する方法では、場を攪乱し流れを生じさせ るので、噴霧による効果についても検討を加える必要 がある。従来の研究からは、伝ば火炎に水噴霧をおこ なった場合の火炎の非定常挙動などはあまり詳細に調 べられておらず、どのように消炎に至るのか不明瞭な 点は多い。そこで本研究では、水をガス爆発抑制の消 火剤として利用することを考慮し、その基礎的知見を 得る目的で,管内を伝ばする予混合火炎に水を噴霧し た場合の火炎の非定常挙動、消炎限界、噴霧の適用限 界などを調べた。

2. 記号表

A	:燃焼管の断面積= 400 (cm²)
В	:B ナンバー (文献 28)
C_s	:水滴表面の飽和蒸気圧 (atm)
D	:一般的に水滴径を表し、 D_{AV} と D_{SMD} を
	含む (µm)
D_{AV}	:算術平均粒径 (μm)
D_{SMD}	:ザウター平均粒径 (μm)
D_f	: 蒸気の空気中への拡散係数 (m²/s)
G	:管断面にわたる噴霧水量= $q_w \cdot A \cdot T_D$ (g)
	注)壁面に付着した水量は含まない。
G_T	:総噴出水量 (g)
P	:貯水タンク内の圧力 (MPa)
P_i	:貯水タンクへの初期加圧 (MPa)
q_w	:水滴の質量流束 (g/cm ² s)
Re	:レイノルズ数 (=U・D/v)
S_L	:層流燃焼速度 (m/s)
S_L'	:水噴霧中の時間経過に伴う燃焼速度 (m/s)

-78 -

T_D	:噴霧継続時間 (s)
T_D^*	:無次元噴霧継続時間 = T_D/T_e
T_e	:火炎が着火から管上端に達するまでの時間 (s)
T_i	:着火後の噴霧開始時間 (s)
T_i^*	:無次元噴霧開始時間 = T_i/T_e
t_{f}	:火炎の温度 (°C)
t_p	:水滴の火炎面通過時間 (s)
t_v	:水滴の蒸発時間 (s)
U_u	:火炎前方未燃焼混合気の気流速度 (m/s)
U	: "
V_f	:火炎の伝ぱ速度 (m/s)
V_g	:ノズルから水滴の噴出・移動によって誘起され
	る気流の平均速度 (m/s)
V_w	:水滴の平均速度 (m/s)
We	:ウエーバ数(5.3 節)
x	:燃焼管管軸から水平方向(管断面)の距離 (cm)
y	:点火ロッドからの鉛直方向の距離 (m)
y_n	:ノズルからの鉛直方向の距離 (m)
ά	:温度拡散係数 (m ² /s)
δ	:火炎帯の厚さ (mm)
ν	:動粘性係数 (m ² /s)
ρ	:密度 (kg/m ³)
σ	:表面張力 (N/m)
ϕ	:当量比

添字

- ―:平均値を示す。
- *g* :気体
- w:水

3. 実験装置及び実験方法

3.1 実験装置

実験装置は Fig. 1 に示したように,鉛直に設置した 燃焼管,噴霧装置,予混合気供給装置から構成されて いる。燃焼管は,長さ 2,000 mm,200×200 mm 正方 形の流路断面の鋼製矩形管で,下端から 100 mm のと ころに点火ロッド(ネオントランス 15,000V)が取り 付けてある。また,管の中央付近を伝ぱする火炎の様 相を観測できるように,200 mm 流路幅,380 mm 長さ の対面する 2 枚のガラス窓とした。噴霧ノズルは,上 方に伝ぱする火炎に対向するように下方へ向けて取り 付けてある。さらに噴霧位置を変えた実験もおこなえ るように,側壁にはいくつかの孔(センサポート)が 開けられており,管壁から水平に噴霧できるようにし た。ただし,管内の流れを阻害しないように,ノズル は管壁から突き出ないようにした。

燃料気体は、メタン-空気あるいは LP ガス-空気 の予混合気である。LP ガスは、プロパンを主成分とす る家庭用い号 LP ガス (プロパン 98.1%, エタンとエ チレン1.0%, イソブタン 0.7%, ノルマルブタン 0.2%) である。対象とした伝ば火炎は予混合火炎であり、水 を消火剤とし噴霧状にして用いた。実験室は大気圧下, 室温は 12°C から 25°C である。

実験では、噴霧角度と噴出量の異なる5種類 (Table 2)の市販のノズルを用い、ノズル (貯水タンク)への 加圧は、高圧タンクから調整器を通した窒素によって おこない、D, qw, Vw, Vgを変化させた。これらの変数 は、水噴霧で重要な因子と考えられるものである¹⁰⁾。 なお、ノズルはすべて一流体型のノズルである。加圧 は窒素によっておこなっているが、所定の時間 (2秒間 程度まで)は水のみしか噴出しない。ノズルへの加圧 量は、メーカ推奨の標準使用条件1 MPa よりも小さい 範囲とした。

3.2 実験条件

実験条件を整理すると Table 1 のようになる。燃焼 管は耐圧性ではないので、いずれかの管端は開放とし た。ノズルの噴霧特性は、P_iを変えることでおこなった。

Table 1 Experimental condition. 実験条件

 (1) 対象火炎 (a) メタン—空気予混合火炎, φ = 0.7~1.1 (b) LP ガス (プロパン 98.1%) —空気予混合火炎, φ = 0.7~1.1 → T_f, S_L, δ, V_fなどの変化
(2) 燃焼管(200 mm×200 mm 正方形, 長さ2 m) (a) 両端開放 (b) 上端閉—下端開 (c) 上端閉—下端閉 $\rightarrow V_f$ の変化
(3) 消火剤 水
(4) ノズル (一流体ノズル) (a) 種類, $P_i = 0.39 \sim 0.83$ MPa $\rightarrow D (D_{AV}, D_{SMD}), q_w, V_w, V_g の変化$ 注) 各変数は時間・空間の関数である (b) T_i の可変 $\rightarrow T_i$ 時における V_f の影響 (c) T_D の可変 $\rightarrow G$ の変化
(5) 噴霧方向 (a) 上端から下方へ, ノズル1つ, ノズル出口は管上端よりも約 20 mm 上 (b) 側壁から水平へ, ノズル1つ, No. 3 センサポート (c) $"$, ノズル2つ, No. 3 と No. 6 センサポート (d) $"$, ノズル2つ, No. 6 と No. 9 センサポート →管内の局所的 $D(D_{AV}, D_{SMD}), q_w, V_w, V_a$ の変化

3.3 実験方法

実験では、はじめに燃料を一定時間だけ混合タンク に供給し、送風機で燃焼管内を循環させることで均一 な予混合気になるようにした。そして、所定の時間の 後に干渉計式ガス濃度計によって濃度を確認し、管の 上と下の開閉用のシャッタを開き、それとともに点火 させ、上方から噴霧をおこなった。これらは、すべて タイマを使った時間制御によっておこなっている。

火炎の様子は,直接光についてはビデオカメラ (SONY DCR-VX1000,30 駒/秒),シュリーレン像に ついては高速度ビデオカメラ (500 駒/s)を用いて観 測した。水滴の移動速度は,高速度ビデオカメラを用 いた影写真撮影法と一定の高さに水平にレーザ光を照 射し,水滴通過に伴う散乱光をフォトトランジスタで とらえる方法によって調べた。さらに詳細な動きを把

握するために, PIV (Particle Image Velocimetry) も使 用した。この PIV システム (米国 TSI 製) は, シンク ロナイザ, ダブルパルスミニ YAG レーザ (532 nm, 12 mJ), 高解像度カメラから構成されている。

水噴霧の質量流束 q_w は、観測窓をはずし、その高さ に小さいサンプル紙一列に並べ、そこに一定時間水滴 を受け止め、後で各瓶の質量を測る方法によって求め た。 V_g は Fig. 2 に示したように、コーティングされた 熱線流速計(時間分解能 10 Hz)を曲管部に設置してお き、鉛直に降下する水滴は液溜めでトラップされ、多 少飛沫があるものの曲管へは誘起された気体が流れる ので、平均的な気流速度を測定することができる。平 均水滴径は液浸法によって求めた。

4. 実験結果及び考察

4.1 水噴霧の性状

Table 2 に示した5種類のノズルの名前Sノズルと Wノズルとは、本研究で便宜的に定めたもので、Sシ リーズのノズルは拡がり角が平均60°、Wノズルが32° である。開放空間に噴霧した場合には、Sシリーズのノ ズルは一様な質量流束分布もち、Wノズルは、ガウス 分布のような中心軸の質量流束が大きく、中心軸から 離れるに従って小さくなる分布をもっている。しかし、 本研究のように燃焼管内に噴霧する場合には、壁面の 影響があるので、噴霧性状が異なるはずである。消火 実験に先立ち水噴霧の性状を調べた。

Table 2 には、本実験に用いたノズルの主な噴霧性 状として、 D_{AV} 、 D_{SMD} 、 $\overline{q_w}$ を示した。 $\overline{q_w}$ は P_i に強く 依存するもので、S シリーズのノズルは P_i の増加とと もに $\overline{q_w}$ が増すことがわかる。W8.5 ノズルでもその傾向 は同様であるが、 P_i が 0.83 MPa になると、逆に 0.68 MPa のときよりもわずかに $\overline{q_w}$ が減少する。これは、 P_i が増すと噴出拡がり角が増すので、壁に多く当たるた

- 80 ---

水を噴霧した場合の管内伝ば火炎の消炎挙動

Table 2	Characteristics of spray nozzles.
	噴霧ノズルの特性

ノズル名	噴射角	出口径	噴出量 0.60 MPo	平均水滴径 [µm]								水噴霧の平均質量流束 q_w			
			において [l/min]	算行	将平均 料	均粒径 DAV		ザータ平均粒径 D_{SMD}			[mg/cm s] (恐然音工端が ら 650 mm 位置, 流路断面)				
			(minj<br ※メーカー 測定値	0.39 MPa	0.59 MPa	0.68 MPa	0.83 MPa	0.39 MPa	0.59 MPa	0.68 MPa	0.83 MPa	0.39 MPa	0.59 Mpa	0.68 MPa	0.83 Mpa
S1.7	$60^{\circ} \pm 10$	1.0	1.7	93	87	75	92	159	175	164	175	40	41	55	65
S5	"	2.0	5.0	88	79	72	97	192	202	156	215	78	103	113	135
S10	"	3.1	10.0	133	117	104	130	227	250	207	235	87	106	127	142
S20	"	4.3	20.0	171	179	175	172	321	348	276	293	92		146	160
W8.5	32°	3.5 (平均)	8.5				142				268	232		292	286
	1		1	1	1	1	1		1	1	1		1		1

Fig. 3(a) と (b) は、それぞれSシリーズのノズル と W ノズルの質量流束 q_w の分布で、燃焼管上端から 下に 650 mm (y = 1.25 m)、観測窓にあたる高さで 調べた。まず、Fig. (a) より、圧力が大きいと、 q_w は 中心軸よりも壁のほうが大きい分布となり、 P_i の減少 に伴って分布が次第に平坦になってくることがわかる。 Fig. (b) の W ノズルでは、中心と壁で q_w が大きい。 燃焼管内で 60°拡がり角のノズルから水を噴霧した場 合には、開放空間とは異なる水滴径、水滴の質量流束 分布になる。水滴は円錐状に拡がり、管壁に衝突し、管 の上端では壁と水滴の衝突する角度が大きいために水 滴が微細になるとともに跳ね返り、壁と衝突する角度

が小さい場合には、管壁に付着して、壁に沿って下に 流れるものと考えられる。さらに、噴霧に伴う周囲気 体の流れが生じるので、その誘起流れが流路下方で発 達する。

Fig. 4 は、 P_i と水滴の平均速度 V_w の関係を示したものである。 P_i とともに V_w は増加するが、単調増加するのではなく、 P_i に対する V_w の増加率は次第に減少する。

Fig. 5 は、水滴の噴出によって誘起される速度 V_g について調べたものである。これらの結果より、 P_i に 対する V_g は V_w よりも小さいことと、 V_g は V_w に比例し て変化することがわかる。なお、窒素のみを噴出させ た場合の V_g は、ノズルに近づくほど大きい³⁰⁾。水滴は

粒径が増加すると、粘性よりも慣性が大きくなり、落 下とともにその移動速度が増加し、その水滴群の終速 度に達する。

Fig. 6は、*T*_D時点での貯水タンク内圧の減少量を調べたものである。*T*_Dが長くなると、タンクの内圧が減少するのは明らかである。とはいえ、本研究で主に用いた S5 ノズルにおいて $P_i = 0.83$ MPa、1 秒間の噴霧時間では、 $P/P_i = 0.94$ 、すなわち 6%程度の減少にすぎないことがわかった。

また、**Fig. 7** は、その T_D に対する水噴霧量 G_T を示したものである。 $T_D = 1$ s まで調べた範囲では、内 圧が低下しても噴霧量はほとんど低下しないことがわ かった。

4.2 水噴霧をしない場合の火炎伝ば速度

水噴霧をおこなう前に、この実験装置における基礎

的な燃焼特性として火炎の伝ば速度を調べた。Fig. 8 は、両端開放条件のもとで、当量比φの異なるメタンー 空気とLPガスー空気の予混合火炎について、時間経過 とともに管内を伝ばする火炎先端の位置を示したもの である。これらは、フォトトランジスタをセンサポー ト No1~3, 6, 8 に装着して調べた。なお、2本の1点 破線部内(0.96~1.34m)は観測窓に相当し、ここを通 してビデオカメラによって火炎伝ばの様子を観察した。 図からわかるように、火炎は点火後、加速しながら伝 ぱを続け、次第にその加速が小さくなる。Fig. 9 は、 メタン-空気予混合火炎について、上端閉じ、下端開 の管端条件における火炎先端位置の時間経過を示した ものであるが、初め火炎が加速し、上端に近づくにつ れて逆に減速する傾向がみられる。

Fig. 10 は、メタンと LP ガスについて、 ϕ に対する 平均伝ば速度 $\overline{V_f}$ を求めたものである。この $\overline{V_f}$ は観測窓、

Fig. 8 Position of propagating flame with time (Top end open - Bottom end open). 時間に対する伝ば火炎の位置(両端開放管端条件)

Fig. 9 Position of propagating flame with time (Top end close - Bottom end open). 時間に対する伝ば火炎の位置(上端閉じ—下端開 の管端条件)

すなわち燃焼管中央付近を伝ばする速度である。 ϕ が 1.0から1.1のときに最大値をもち,このような結果は, バーナを使ったこれまでの実験と一致する²⁶⁾⁻²⁸⁾。上 端開,下端閉じの管端条件における火炎の伝ば速度は, ほかの管端条件よりも大きく,その火炎伝ば速度は最 大で45 m/s ほどにもなる。逆に上端閉じ,下端開の 管端条件においては,その速度は最大で1.2 m/s 程度 である。LP ガス—空気予混合火炎のほうが,メタン-空気予混合火炎よりも伝ば速度が大きいことがわかっ た。燃焼管の開放の有無によって伝ば速度が異なるの は,浮力とともに火炎と同じ上方へ向かう未燃焼流れ が拘束されずに流動できるためと考えられる。

Fig. 11 Delay of spray and duration of spray. 噴霧開始時間と噴霧持続時間

4.3 水噴霧時の消炎:燃焼管両端開放

4.3.1 消炎挙動及び水滴の動き

初め管両端のシャッタは閉じておき、シャッタを開く とともに点火し、上方に伝ばする火炎に対してある時 間遅れのもとで噴霧をおこなった(Fig. 11)。消炎の 判定は、目視により、噴霧ノズルより前方で消炎した とき、すなわち、管上端から火炎が見られないときと 定めた。なお、毎回の実験では、管内部を観測窓を通 してビデオカメラ撮影をおこない、消炎に至る火炎の 挙動を観察している。

Photo 1 Quenching behavior of propagating flame. 伝ば火炎の消炎挙動

Fig. 12 Illustration of quenching behavior of propagating flame. 伝ぱ火炎の消炎挙動の概要図

Photo 1 は、燃焼管両端開放条件における代表的 な水噴霧による消炎の様子で、 $\phi = 0.7 \text{ のメタン-空}$ 気予混合火炎に対し、S5 ノズルを $P_i = 0.83$ MPa、 $T_i = 0.63$ s、 $T_D = 0.35$ sの条件で噴霧したものある。 初め火炎は、滑らかな形状をもって上方に伝ぱを続け ている (0 s)。上から水噴霧があり、火炎面に水滴が流 入するとともに、火炎面が乱れ、次第に伝ぱの速度が 低下していき、後退するようになる (0.133 から 0.267 s)。その後、逆に火炎は上方に伝ぱしながら消えてい く (0.4 s)。このような一連の火炎の挙動から、消炎は 一瞬にして起こるのではなく、消えるまでにはある時 間を要することがわかる。

Photo 2 Movement of water droplets measured by PIV. PIV で測定した水滴の動き

実験の結果、噴霧に伴う火炎の挙動は、概ね五つに 分類できることがわかった。Fig. 12 は、水噴霧の際 に消炎する場合としない場合を模式的に示したもので ある (Fig. 11 も併せて参照のこと)。図の (Q1), (Q2) は消炎する場合で、(P1)、(P2)、(P3)は消炎しない場 合である。(Q1)では、わずかに上方に伝ばした後、後 退すなわち下方へ伝ばし消えていく。(Q2)は Photo 1 に見られるように、一旦後退するが、後で上方に伝ば するようになり、伝ばしながら消えていく。(P1)の場 合も一旦後退するが、その後急激に上方に伝ばし、消 炎しない。この挙動では、火炎が後退するとともに火 炎全体の左右の対称性がくずれ、その後、火炎先端は 片側に寄って伝ばすることが多い。しかし、燃焼管の 下から観察したところ、流路の四隅付近を先行して伝 ぱすることはなかった。(P2) では後退せず, 伝ば速度 が低下するものの上方に伝ばを継続する。(P3)では, すぐに火炎が乱れ、伝ば速度が増加し、加速的に伝ば する。この場合も消炎せず、管上端から音を発して火 炎が噴出する。消炎しない場合に最も多く見られた火 炎の挙動は、この(P3)である。

Photo 2 は、水噴霧の際の水滴の動きを PIV で求 めた一例である。高解像度白黒ビデオカメラにより撮 影したφ = 0.7 のメタン – 空気予混合火炎に対して、 水滴の移動を示すベクトルを重ねて示した。この火炎 は、Fig. 12(3)から(4)の(Q1)に相当する状態で、後 退する前に少しの時間だけ火炎が止まっている段階で ある。火炎面には凹凸のある乱れが明瞭に見られる。 水滴の動きを見ると、火炎前方、すなわち火炎よりも 上の領域の水滴は、下向きあるいは斜め下向きに動い ている。その方向が一様ではないことから、水滴の動 きは乱れていることがわかる。しかし、水滴全体が火 炎前方で逆流し、上方に移動することはなく、火炎面に

Fig. 14 Relation between T_i and T_D for flame quenching. 消炎に及ぼす $T_i \ge T_D$ の関係 (S10 nozzle)

Fig. 15 Relation between T_i and T_D for flame quenching. 消炎に及ぼす $T_i \ge T_D$ の関係 (LPgas, S5 nozzle)

流入し、総じて、下方へ向かうことがわかる。

高速度シュリーレン撮影をおこなった結果からは, Fig. 12(2)の状態で、水滴が火炎面を通過し、それ まで滑らかであった火炎面に凹凸が見られるようにな る。100 µm 程度の粒径を持つ水滴は、火炎面前方で蒸 発しきらずに火炎面を通過する(5.2 節)。水滴の数密 度と火炎面の凹凸のスケールからすると、個々の水滴 が火炎面位置に流入し、流入した個々の位置にくびれ ができ、それが発達するわけではないことがわかった。 4.3.2 消炎限界

噴霧開始時間と噴霧持続時間を変えた場合の消炎限 界は, Fig. 13~15 の通りである。 Fig. 13(a)~(c) は、メタン-空気予混合火炎を対象に、S5 ノズルを用 いた場合の消炎限界を示したもので、予混合気の濃度 と Piを変化させて求めた。これらの図では、各曲線よ りも上あるいは左上が消炎する範囲であり、曲線より も下あるいは右下が消炎しない範囲を示している。こ の時間 T_iは、電磁弁の作動遅れを予め調べ補正を加え たもので、着火を始めてから実際に水がノズル孔から 噴出する時間である。これらの図から、①P_iが大きいほ うが短い T_D で消炎が達成できること、 $(2)P_i$ を一定とす ると、φが小さく、燃料気体が薄い火炎になるに従い短 いTDで消炎できること、③Tiが早い段階でも最低限必 要とする水噴霧量があること、④T_iが遅くなると、消炎 できないこと、⑤1.2 s 以上噴霧しても消炎には寄与し ないこと,などがわかる。さらに, $\phi = 1.0, P_i = 0.83$ MPaの曲線において $T_i = 0.22$ s, $T_D = 0.7$ s 付近の湾 曲,同様に $\phi = 0.85, P_i = 0.83$ MPa の曲線における 湾曲(下への凸部)、 $\phi = 0.7$ の各曲線に見られるよう に、早く噴霧しても消炎せず、逆に遅く噴霧しても効 果的に消炎する場合があることがわかった。このこと に関しては次節で述べることにする。

Fig. 14(a)~(c) は、S10 ノズルを用いた場合の消炎 限界であるが、傾向はS5 ノズルと同じである。ただし、 S10 ノズルを使った場合は、S5 ノズルに比べて消炎範 囲がやや狭いことがわかる。すなわち消炎達成のため には、早い T_i 、長い T_D を要する。本研究では、S5 ノ ズルが最も効果的に消炎が達成できた。

Fig. 15 は, LP ガス-空気予混合火炎を対象に,S5 ノズルを用いた場合の消炎限界を示したものである。 $\phi = 0.7$ についてみると,消炎達成のためにはメタン の場合よりも噴霧持続時間を長く必要とすることがわ かる。 $\phi = 1.1$ の結果からは,消炎が達成できる T_i は, せいぜい 0.15 s までである。LP ガス-空気予混合火 炎のほうがメタンのそれよりも消炎できる範囲は狭く, 多くの水量を必要とする。

Fig. 16 は, Fig. 13(a)~(c) の時間 T_iと T_Dについ

Fig. 17 Relation between T_i^* , G and $q_w \cdot T_D$ for flame quenching. 消炎に及ぼす T_i^* , G と $q_w \cdot T_D$ の関係

て、水を噴霧しない場合に火炎が燃焼管上端に達するま での時間 T_e で無次元化をおこなったものである (Fig. 8 参照)。伝ば速度が大きい $\phi = 1.0$ では無次元時間 $T_i^* = 0.4$ まで、伝ば速度が小さい $\phi = 0.7$ では、 $T_i^* = 0.75$ までは消炎が達成できることがわかる。

また、**Fig. 17** は、S5 ノズルについて、消炎限界値 となる $T_D \ge \overline{q_w}$ から消炎に必要な水噴霧量を求めた結 果である。この消炎限界値となる $T_D \ge 1$ しては、消炎 限界曲線が T_i に対して大きく変化しない範囲で最大値 をとった。例えば、**Fig. 13(a)** において、 $P_i = 0.68$ MPaでは T_D が 0.68 s、0.83 MPa では T_D が 0.5 s という

Fig. 18 Variation of G with D_{SMD} for flame quenching. 消炎に関する D_{SMD}に対する G の変化

様にである。また、Gは、流路断面積 $A \times \overline{q_w} \times T_D$ から 求めたもので、壁に付着した水滴を除き、断面に噴霧 された水滴が全て火炎面に流入し消炎に寄与するもの とした。その Fig. 17 を見ると、 $\phi = 0.7$ 、 $P_i = 0.83$ MPa では、 $T_i^* = 0.78$ (0.69 s) までは流路断面に 15g, 39 mg/cm²以上の質量流束で、 $\phi = 1.0$, $P_i = 0.83$ MPa では、 $T_i^* = 0.35$ (0.19 s) さらに 0.5 (0.24 s) ま では流路断面に 27g、69 mg/cm²以上の質量流束で消 炎することがわかる。なお、それぞれの P_i での水滴径 は、Table 2 の通りである。

Fig. 18は、4種類のSノズルについて、消炎に及ぼす D_{SMD} とGの関係を示したものであるが、水滴径が小 さいほど少ない水量で消炎が達成できることがわかる。 また、一定の水滴径で見ると、 ϕ の増加とともにGが 増加する傾向が見られる。例えば、 $D_{SMD} = 210 \ \mu m$, $P_i = 0.83 \ MPa$ の場合を比較をすると、 ϕ が 0.7、1.0、 1.1 となるに従い、G はそれぞれ、15、28、30gと増加 する。

4.3.3 V_aの効果

対象とする火炎が同じで同じ水滴径でもあっても,消 炎のための水量が P_i によって異なることに注意を要す る。例えば, **Fig. 18** より, $\phi = 0.7$ について $D_{SMD} =$ 210 μ m で見ると, $P_i = 0.83$ MPa では G は 15g, $P_i = 0.68$ MPa では 22g を消炎のために必要とする。 4.1 節で述べたように, V_g は P_i とともに変化する。 P_i が小さい場合には V_g も小さいので, 火炎の伝ぱ速度の 低下への寄与が小さくなる。

Fig. 12(1) 中に示したように, 層流燃焼速度 S_L, 火

炎前方の未燃焼予混合気の流速を*U*_uとすると,火炎の 伝ば速度*V*_fは,上方を正号にとり,

$$V_f = S_L + U_u \tag{1}$$

で表される。 $\phi = 0.7$ では、 $S_L = 0.2 \text{ m/s}^{27}$ 、噴霧 しない場合には、**Fig. 10**より $V_f = 4 \text{ m/s}$ であるの で U_u は正号であり、未燃焼混合気は上向きの速度を持 つ。火炎が後退する場合には、 V_f は負号となり、 S_L の 減少、 U_u が逆に下向きの速度を持つようになる。すな わち、この状態では、絶対値 $|U_u| < |V_g|$ である。こ れは、消炎の効果に対向気流の増加も重要であること を示している。 S_L が減少する様子は、火炎の長さが増 加することからも推測できる(**Fig. 12(6**))。 V_g が変 わらないのに消炎せずに火炎が加速的に伝ばするのは、 層流火炎から乱流火炎に遷移し、 S_L が増加し、乱流燃 焼速度になり、見かけ上、それまでの S_L 値よりも大き い値となるためと考えられる。

4.3.2節で示した消炎限界曲線で湾曲し,*T_i*は遅いが 短い*T_D*で効果的に消炎できるのは,ノズルに火炎が 近づき,下向きの予混合気流れの速度が大きいためで ある。しかし,*V_g*の増加だけでは消炎は達成されない。 なぜなら,火炎が伝ばしようとする前方にすでに予混 合気が存在するからである。*V_g*の効果により*V_f*が低下 し,十分な水滴が火炎面に流入し,*S_L*を低下させるこ とができれば,消炎が達成できる。

4.4 水噴霧時の消炎:上端閉—下端開あるいは上端 開—下端閉

Fig. 19 は、上端閉-下端開にした管端条件におい て、 $\phi = 0.7, P_i = 0.83$ MPa の消炎限界を示したもの である。消炎の判断は、センサーポート No.8 に取り付 けたフォトトランジスタに出力が無い場合とした。図 からわかるように、上端を閉じた場合では伝ば速度が 小さいとはいえ (Fig. 9,10), 早く噴霧を開始しても 消炎しない。実験において、このときの火炎の挙動を 見ると、乱れた火炎が上方に伝ばするのが観察された。 このことから、早く噴霧することで予混合気が乱され、 早い段階で乱流火炎に遷移することがわかる。一見す ると、両端開放の管端条件とは異なり、T_iが遅い場合に 消炎が達成しやすそうである。しかし、この場合には、 両端開放条件において、水滴群によって消炎するとい う挙動ではなく、むしろ、火炎が吹き飛び、下方に後 退しながら消炎していくという消炎挙動を示す。すな わち、ノズルに近い部分ではV_aが大きく、その対向気 流によりノズルに近づいた火炎が吹き飛ばされるよう に後退し、消炎している。この管端条件において、噴 霧しない場合の V_f は1 m/s程度であり,式(1)から U_u

Fig. 19 Relation between T_i and T_D for flame quenching. 消炎に及ぼす $T_i \ge T_D$ の関係 (S5 nozzle)

も小さい。この状態では、 $|U_u| < |V_g|$ であり、消炎 に関して相対的に V_g が強く影響しているものと推測で きる。なお、 $\phi = 1.0$ の条件では、消炎を達成するこ とができなかった。

上端開,下端閉じの管端条件では,消炎が達成しや すいと思われた $\phi = 0.7$ について,早い段階の T_i ,長い T_D でさえも,消炎させることができなかった。 $\phi = 0.7$ の V_f は 10 m/s 程度であり,相対的に V_g の効果が小さ く,火炎の伝ば速度を減少させるには至らないようで ある。

4.5 側壁から水を噴霧した場合の消炎

ノズルを側壁に取り付けた消炎実験の条件は, Table 1 に示した通りである。ただし, 燃焼管の両端は開放 である。

 条件(b)の燃焼管No.3の位置にS1.7からS20の ノズルを一つ取り付けた場合;

いずれの条件でも消炎しないことがわかった。ノズ ルを取り付けた側の壁に沿って火炎が先行して伝ばす る様子が多く観測された。

 条件(c)のNo.3とNo.6の2カ所にS5ノズルを 取り付けた場合;

消炎せずに,加速的に伝ばした。このときには,条件(b)と同じように,ノズルを取り付けた側に壁に沿っ て火炎が先行して伝ばする様子が見られた。このよう な消炎しない挙動を示すのは,おそらく壁に水滴が当 たり,そのことで流路断面で均一な水噴霧分布となら ないためであると考えられる。

 条件(d)のNo. 6, No. 9の対向する位置にS5ノズ ルを取り付けた場合;

Fig. 20 Relation between T_i and T_D for flame quenching. 消炎に及ぼす $T_i \ge T_D$ の関係 (S5 nozzle×2)

Fig. 20 は、この条件の消炎限界曲線である。まず、この限界曲線からわかることは、Fig. 13(a) に比べて 消炎範囲が広いことである。 T_i に関して見れば、火炎 先端がノズル取り付け位置を少し通過しても消炎が達 成できる。すなわち、火炎背後からの水噴霧によって も消炎が達成されている。 $T_i = 0.33$ から 0.44s の範囲 では、 T_D が 0.35s と短く、効果的に消炎が達成されて いることがわかる。

Fig. 21は、このノズルの設置条件について、非燃焼 状態、y = 1.3mにおいて求めた質量流束分布である。 対向する水滴が管中心で衝突するので、中心軸の q_w が 大きく、壁面の q_w が小さい分布をしている。 q_w の平均 値は 221 mg/cm²である。

この噴霧方法では、噴霧方向が火炎の伝ば方向に垂 直なので、予混合気をそれほど乱さずに局所的に予混 合気の濃度が低い領域を作り出し、それまでの層流火 炎が乱流火炎に急激に遷移することなく消炎を達成で きるものと考えられる。壁面付近にも水噴霧があるの で四隅を火炎が伝ばすることがない。

4.6 消炎条件の整理

Table 3 は,主な消炎条件を整理したものである。側 壁からノズル2つを対向的に用いた場合を除くと,上 端から噴霧したときは,伝ば速度が3.8 m/s までの範 囲で消炎が達成できることがわかった。噴霧持続時間 は0.85s 以上が必要である。上端閉一下端開の管端条 件においては,火炎がノズルに近づき,それが吹き飛 ぶことで消炎がおこりやすい。

消炎限界曲線からわかるように,*T_i*が遅くなると消 炎が達成できない。これは,火炎が瞬間的には消えな

いので,水噴霧の中を火炎が上方に伝ばを継続し,燃 焼管上端までに消炎が達成できないためである。

噴霧ノズルについて、SノズルとWノズルを比較す ると、広い範囲に噴霧できるSノズルのほうが消火効 果が大きいことがわかった。すなわち、一様な噴霧流 束分布を持つノズルは、燃焼管壁に沿って火炎が伝ば するのを抑えることができる。Wノズルは、中心軸で の噴霧流束が大きく、それとともにVgも大きい。その ため、中心付近での対向気流が火炎面を大きく変形さ せ、場合によっては非対称な火炎となる。そのことが 乱流火炎への遷移となり、加速的に伝ぱするため、消 炎できない一つの理由と考えられる。

5. 考 察

5.1 他の研究との比較

消火剤の消炎効果を比較する方法の一つとして,あ る粒径の水滴が単位面積,時間あたりにどれだけ火炎 面に流入したか比較検討するというのがある。そこで, 他の研究と比較してみた。

Sapko らの実験¹²⁾の消炎条件は、メタン-空気予混 合火炎 9.1 % (ϕ =0.95) 、23°C について、 D_{SMD} = 100 μ m では 127 mg/cm²s、7.0% (ϕ =0.72) について、 D_{SMD} = 100 μ m では 58 mg/cm²s、200 μ m につい ては 127 mg/cm²s である。また、簡単な計算から、最 も効果的に消炎できる水滴径が 10 μ m であるとした。 さらにその研究では、水の温度(20°C と 54°C)につ いても調べ、水温が高いほうが効果的に消炎できると している。しかし、水の温度については、それほど効 果がないという研究結果もある¹⁵⁾。Proust¹⁷⁾は、円形

Table 3	Flame quenching condition (S5	nozzle).
	主な消炎条件 (S5 ノズル)	

管端開放の 有無	ノズルの位置 個数	燃料気体	濃度, Vol %(当量比 <i>φ</i>)	算術平均 粒 径 <i>D_{SMD} [µm</i>]	ザータ平 均粒径 D _{AV} [µm]	発火から噴霧開 始時間 T_i [ms]	噴霧しない 場合の <i>T_i</i> 時 刻の伝ぱ速 度 [m/s]	水滴の平均 質量流束 q_w $[mg/cm^2s]$	噴霧持続 時間 T_D [ms]		
両端開放	管上端,一つ	メタン	6.9% (0.7)	92	175	660 以内 (※ 1)	3.7 以下	108 以上	280 以上		
"	"	"	"	172	293	660 以内 (※ 1)	3.7 以下	144 以上	850 以上		
	11	11	9.5%(1.0)	97	215	260 以内	2.9 以下	135 以上	500 以上		
"	11	11	"	130	235	210 以内	2.7 以下	144 以上	850 以上		
上端閉じ- 下端開	11	11	6.9%(0.7) 9.5%(1.0)	97	215	ノズルに火炎が近づくと吹き飛び消炎する。しかし、 両端開放の場合と同じような水噴霧条件では消炎でき なかった。					
上端開-下 端閉じ	管上端,一つ	11	6.9%(0.7)	97	215	消炎しなかった。					
両端開放	両端開放 側壁, 火位置か 〃 6.9%(0.7) — — 上から噴霧で両端開放と ら 0.8m, 一つ 9.5%(1.0)			端開放と同じ た。	司じような水噴霧条件では						
	側壁, 点火位置 から 0.8m と 1.44m, 二つ	11									
11	側壁 , 点火位置 から 1.44mm (水 平対向),二つ	11	9.5%(1.0)	_		450 以内	5.7 以下	221 以上	530 以上		
両端開放	管上端,一つ	LP ガス (プロパン 98.1%)	2.9%(0.7)	97	215	145 以内	3.3 以下	135 以上	850 以上		
11	"	"	4.4%(1.1)	97	215	560 以内 (※ 2)	3.8 以下	135 以上	350 以上		

※ 1) ※ 2) 本実験条件で制御した最長時間

バーナ上に定在予混合火炎を形成し、未燃焼側の混合 気、すなわち上流側からノズルを使って水噴霧をおこ なった。この研究は、Joulin³¹)や Mitani²⁵⁾の漸近解析 による結果と比較するためにおこなわれたものである。 消炎限界を求めた結果、Joulin の理論値の最適水滴径 $D_{SMD} = 80 \mu$ とは良好な一致が見られなかった。 Gieres¹⁸⁾は、5×5 cm 正方形流路、長さ 1.2m の燃焼管 を用い、上方に伝ばするメタン-空気予混合火炎につ いて、上から水噴霧をおこなった。消炎に及ぼす質量流 束は、 $D_{AV} = 195 \mu$ m で 250 mg/cm²s、 $D_{AV} = 30 \mu$ m で 110 mg/cm²s である。

以上の研究結果と本研究結果を比較すると,水滴径 に対する水噴霧の質量流束のオーダは一致していると いえる。

5.2 予混合火炎の消炎

水噴霧による予混合火炎の消炎としては、①熱的に よる効果、②水蒸気の添加による燃焼の不活性効果、そ して③対向気流による吹き飛び効果などがある²⁶⁻²⁸⁾。 ここでは、①と②について述べることにする。

まず,②の不活性効果とは、燃焼下限界にすること であり、火炎前面で水滴が蒸発し、未燃焼の混合気を 希釈することで消炎が達成される。このとき、予混合 火炎の消炎について、消火剤のピーク濃度(最小添加 量)で評価されることがある。7 %(Vol.)メタンー空 気予混合火炎の水(蒸気)添加のピーク濃度は 26.8% (Vol.)である²²⁾。従って、空気の濃度は、66.2 % (Vol.) である。

噴霧された全水滴が燃焼管内に浮遊していると考え ると、実験結果、 $\overline{q_w} = 150 \text{ mg/cm}^2 \text{s}$ で T_D が1sの場 合, Gは 60g となり, 燃焼管 8 × 10^{-2} m³にはわずか 6×10⁻⁵ m³の水滴 (ただし,予混合気は乾燥している とする)しか含んでいないことがわかる。この結果は, 上記のメタンー空気予混合火炎のピーク濃度からする と、かなり小さい。このことからすると、流路内を伝ば する火炎の消炎は、 伝ばする前方の予混合気の量で消 炎濃度を評価したほうがよいことが推測できる。すな わち,火炎前方のある距離(領域)での予混合気が消炎 濃度となり、その距離(領域)を火炎が伝ばする時間に 消炎すればよい。ただし,水滴と火炎が十分に接触し て蒸発する必要があり、これにはVaが寄与する。対向 気流速度が増加することで,火炎の伝ば速度が減少し, 接触時間を長くできる。例えば、消炎時間が1秒で、そ のときの対向気流による影響で火炎の伝ば速度が減少 し、燃焼速度に近い速度 0.3 m/s であったとすれば、平 面火炎としてその時間に火炎が移動する距離に占める 予混合気の体積は、0.3×断面積 0.04 m² = 1.2×10⁻² m³となる。実際は、火炎面近傍で予混合気の濃度はよ り減少しているはずである。

①の熱的による効果で消炎に至るには水滴の蒸発が 欠かせない。火炎からの熱で水滴が蒸発する際の蒸発 時間 *t*_vは,次式のように表せる²⁸⁾。

$$t_v = D^2/\beta$$

= $(\rho_w \cdot D^2)/[8 \cdot \rho_a \cdot \alpha_a \cdot \ln(1+B)]$ (2)

ここで,

$$B \sim Re^{1/2} \tag{3}$$

のように、気流の速度の増加に比例してBナンバーが 増加、蒸発が促進されると考えられる。本研究での気 流速度は、水滴の相対速度 $U_u - V_g$ で表される。すなわ ち、 t_v は、気流の速度の増加によって小さくなる¹⁴⁾。

また、水滴の火炎面を通過する時間 t_p は、

$$t_p = \delta / (V_f + V_w) \tag{4}$$

である。静止水滴中を燃焼速度で火炎が伝ばする際の 通過時間は δ/S_L であり、その時間に蒸発が完了すれば よいので、正田と秋田は、最適な水滴径を次式のよう に表した²⁶⁾、

 $D = 2[(2 \cdot D_f \cdot C_s \cdot \delta)/(\rho_w \cdot S_L)]^{1/2}.$ (5)

この Dのオーダは 10 µm 以下である。

火炎の伝ば速度が増加すると、水滴との相対速度が 増加し、式(2)の蒸発時間が小さくなっても、式(4)の 火炎通過時間がより小さくなるので、火炎面での水滴 の蒸発による消炎の寄与が小さくなる。水滴と火炎が 接触している時間が長くなるように、噴霧することが 好ましいといえる。さらに詳細な解析をおこなうため には、火炎帯δにおける熱損失を考慮する必要がある。

5.3 水滴分裂の可能性

対向気流が増加すると大きな水滴は扁平になり,分裂することがあるが,この臨界条件はウエーバ数 We で表されることがある^{14,29)}。

$$We = (\rho_q \cdot U \cdot D/\sigma). \tag{6}$$

衝撃波を伴う流れでは、水滴の分裂効果が見られる ので²³⁾、あえて水滴を微細にしないこともある。文献 (29) によると、臨界条件はWe数 = 13 である。本実験 の値、 V_w = 26 m/s を U として用い、 D_{AV} = 100 μ m、 温度 20°Cの気体と水の物性値を代入すると、We = 1.1 となる。50 m/s、200 μ m としても、We は 8.4 程度で ある。すなわち、この程度の速度では水滴が分裂する ことはない。

6. 結 論

本研究では、水をガス爆発抑制の消火剤として利用 することを考慮し、その基礎的知見を得る目的で、管 内を伝ばする予混合火炎に水を噴霧した場合の火炎の 非定常挙動、消炎限界、噴霧の適用限界などを調べた。 対象とした伝ば火炎は、メタンー空気と LP ガスー空 気予混合火炎である。得られた結果は次の通りである。

- (1) 火炎は瞬間的に消えるのではなく、ある時間経過 後消える。
- (2) 水滴径が小さいほど少ない水量で消炎が達成できるが、最低限必要とする水量がある。当量比を0.7から1.0まで変えて調べた結果、予混合気の濃度とともに消炎に必要とする水量が増加する。
- (3) 着火から早い段階で消炎を達成することが好ましいが、早く噴霧を開始しても消炎しないことがある。噴霧によって予混合気を攪乱することになるので、逆に燃焼を促進させることがある。
- (4) 噴霧に伴い誘起される未燃焼混合気の対向流れは, 火炎の伝ば速度を減少させ,結果としては水滴と火 炎の接触時間を長くし,効果的な消炎に寄与する。
- (5) 消炎が達成しない場合には、むしろ燃焼を促進させ、加速的に伝ぱすることがわかった。
- (6) 噴霧開始直後の初期段階では、水滴群による火炎 面への攪乱は小さい。しかし、時間とともに火炎 面に凹凸のある乱れが見られるようになり、その 乱れが発達する。

(7) 側壁から2つのノズルを対向するように水平に噴 霧した場合には、消炎が効果的に達成できること がわかった。

参考文献

- Jones, A. and Nolan, P.F., Discussions on the use of fine water sprays or mists for fire suppression, J. Loss Prev. Process Ind., 8-1(1995), 17-22.
- Rasbash, D.J., The extinction of fires by water sprays, Fire Research Abstracts and Reviews, 4(1962), 28-53.
- Fristrom, R.M., Combustion Suppression (A literature survey with commentary), Fire Research, Abstracts and Reviews, 9(1967),125–160.
- Williams, F.A., A review of flame extinction, Fire Safety J., 3(1981), 163–175.
- Atreya, A., Crompton, T. and Suh. J., An experimental and theoretical study of mechanisms of fire suppression by water, PB Rep., PB-95-104964, (1994), 67-68.
- 6) 矢治頼夫,噴霧消火に関する研究,日本火災学 会論文 集,9-2(1960),58-62.
- (第2報),
 (第2報), 日本火 災学会論文集, 11-1(1961), 21-25.
- 8) 秋田一雄, 消火設備 (1), 安全工学, 2-2(1963), 127-132.
- *田 市,消火薬剤の消火効果の評価について、火 災、21-3(1971), 148-154.
- 10) 中久喜 厚,高橋正一,液体火災-水噴霧消火,日本火 災学会論文集,20-2(1971),83-99.
- 11) 稲村勝正, ウオーターミスト消火システムに関する国際会議の概要報告, 火災, 44-3(1994), 31-34.
- 12) Sapko, M.J., Furno, A.L. and Kuchta. J. M., Quenching methane - air ignitions with water sprays, Bureau of Mines(USA), R.I. 8214(PB-266 727) (1977).
- van Wingerden, K. and Wilkins, B., The influence of water sprays on gas explosions. Part 1: water-spraygenerated turbulence, J. Loss Prev. Process Ind. 8-2(1995), 53-59.
- 14) van Wingerden, K., Wilkins, B.,Bakken, J. and Pedersen, G., The influence of water sprays on gas explosions. Part 2: mitigation, J. Loss Prev. Process Ind. 8-2(1995), 61-70.
- Wolfe, J.E. and DeSipio, P.A., Evaluation of fine water mist for applications in naval aircraft fire protection and explosion suppression, FED-Vol. 211, Fluid Measurement and Instrumentation, ASME (1995),

35 - 40.

- 16) Lutz, A.E., Marx, K.D. and Dwyer, H.A., A model of flame interactions with water droplets, AIAA-84-0127 (1984),1-10.
- Proust, Ch., Flame-water droplets interactions, Proc. Specialist Meeting on Gas Explosions, (1996), Norway.
- Gieres, M., Interaction of water droplets with propagating gaseous flames, (1996), Warsaw University of Technology.
- Moore, P. E., Suppressants for the control of industrial explosions, J. Loss Prev. Process Ind., 9-1(1996), 119–123.
- 工業技術院資源技術試験所編,可燃性ガス爆発防止野 外実験特集,採鉱と保安,11-12(1965) 617-639.
- 21) Bartknecht, W., The course of gas and dust explosions and their control, Proc. First Int. Loss Prev. Symp., (1974), Ed. Bushmann, C.H., Elsevier Scientific Publishing Co., 159–174.
- 22) Zabetakis, M.G., Flammability characteristics of combustible gases and vapors, Bureau of Mines (USA) Bulletin 627(1965).
- Gelfand, B.E., Droplet breakup phenomena in flows with velocity lag, Prog. Energy Combust, 22(1996), 201-206.
- 24) Shtemler, Y.M. and Sivashinsky, G.I., On upward propagating flames, Combust. Sci. and Tech, 102(1994), 81–93.
- 25) Mitani, T., A study on thermal and chemical effects of heterogeneous flame suppressants, Combust. Flame, 44(1982), 247–260.
- 26) 正田 強, 秋田一雄, 燃焼概論, コロナ社
- 27) 日本火災学会編,火災便覧(第3版),共立出版(1997),42.
- Kuo, K.K., Principles of Combustion, John Wiley and Sons (1986), 379.
- 29) Perry, R.H. and Green, D.W., Perry's Chemical Engineers' Handbook, 7th Ed. McGraw-Hill (1997).
- 30) 八島正明,第 31 回安全工学研究発表会予稿集 (1998), 81-84.
- 31) Joulin, G, Asymptotic analysis of non-adiabatic flames: heats losses towards small inert particles, Proc. 18th Symp.(Int.) on Combust., (1980), 1385– 1404.

٨.

(平成 11 年 3 月 4 日受理)