Study on the Relationship between Chemical Structure and Thermal Stability of Reactive Chemicals (2nd Report) —Thermal Decomposition of Nitrophenylacetic Acid Isomers—

by Takayuki ANDO**

Abstract: In manufacturing, transporting, and storage of reactive chemicals in recent years, the hazard evaluations have been extremely important. In the chemical industry, the most concerns are focused on thermal hazards such as runaway reactions and thermal decompositions, which are mostly governed by thermodynamics and reaction kinetics of these reactive chemicals in the system.

The purpose of this work is to establish the method of estimating the thermal hazards of reactive chemicals by investigating the relation between the chemical structure and the decomposition characteristics of these chemicals.

In our previous report, the decomposition characteristics of the three isomers of nitrophenylacetic acid (NPA) were measured with Differential Scanning Calorimeter (DSC) to clarify the isomeric effect on the decomposition of the isomers, and gaseous decomposition products of the isomers were analyzed with autoclave-Mass Spectrometer (MS) to investigate the isomeric effect on the decomposition mechanism for the isomers.

In this paper, the three isomers of NPA were allowed to decompose with DSC and Curie Point Pyrolyser, and the decomposition products were analysed with GC (Gaschromatograph)-MS to get more detailed information on the decomposition mechanism for the isomers.

The result are summarized as follows:

(1) The first exothermic peaks in the DSC curves for ortho and para isomers of NPA are mainly due to decarbonation, and carbon dioxide and nitrotoluenes are formed.

(2) The second exothermic peaks in the DSC curves for ortho and para isomers of NPA are mainly due to the decomposition of nitrotoluenes formed in the first step of decomposition.

(3) As m-nitrotoluene is not found in the decomposition products of m-NPA, the decomposition reaction of m-NPA is not simple decarbonation, but seems to be spontaneous formation of carbon dioxide and m-nitrobenzaldehyde.

Keywords: Thermal Decomposition, Isomeric Effect, Differential Scanning Calorimetry, Curie Point Pyrolysis.

*この研究の一部は、第18回安全工学シンポジウム（1988）及び工業火災協会秋季大会（1989）において発表した。

**化学研究所 Chemical Safety Research Division
1. 緒 言

最近の先端化学技術の急速な進歩に伴い、多種多様な化学物質がさまざまな分野で製造され、また取り扱われるようになってきている。

これらの化学物質は、その合成、精製及び利用法などの技術については各種の文献に記載されているが、その危険性については充分把握されていないものや公表されていないものが多い。そのため、新規の化学物質を取り扱う場合や製造条件を変更するような場合に、思いがけない災害が発生する例が増えている。

当研究は、反応性物質の分解速度、分解熱等の熱分解特性とそれらの物質の化学構造との関係を把握することにより、実測が困難な物質や新しく開発される物質の熱的危険性を推定、予測することを目的とするものであり、前報1)では一覧換二チロペンゼンの熱分解特性に及ぼす異性体の影響を比較した結果を報告した。

熱分解危険性の評価において、分解特性の値自体も当然必要な情報であるが、分解生成物の分析も同様に重要なものである。

それは、分解生成物が同定されることによって生成熱から分解熱を推算することが可能となるほか、分解機構を解明して化学構造と関連付けるのに役立つことができるからである。また、その分解反応が終了単一の過程で進行しているのか、複数の反応が並行しないかを推定的に起こっているのかについても知見を得ることができる。

化学物質を熱分解させるのには、
(1) 示差熱分析計(DTA), 示差熱差熱計(DSC)などの熱分析装置
(2) 断熱貯蔵試験装置、断熱反応測定装置(ARC)などの断熱試験装置
(3) キューリーポイントバイロライザ(CPP)などの急速加熱分解装置

を用いることができる。

これらのうち、熱分析装置は、発熱開始やピーク温度付近などの任意の時点で測定を中断してサンプリングすることが容易である。そこで、発熱曲線をみながらある温度のところで加熱を停止して、試料を取り出した後、溶媒に溶解させて分析すれば、ある温度での生成物が分かり、その温度領域における分解機構の解明が可能となる。ただし、上記の方法では、ガス状の生成物を同時に分析することはでき

2. 実 験

2.1 DSC-GCMS 法による測定

2.1.1 実験装置及び方法

NPA の各異性体試料は、東京化成（株）製の特級試薬をそのまま用いた。

DSC による試料の熱分解は、TA インスツルメン

ト社製91 型加压 DSC 装置を用いて行った。データ
反応性物質の化学構造と熱安定性の関係（第2報）

Fig. 1 Pressure DSC curves of NPA isomers
ニトロフェニル酸異性体の圧力DSC曲線

1	o-Nitrotoluene
2	Formanilide
3	o-Nitrobenzaldehyde
4	o-Nitrobenzyl alcohol

Fig. 2 TIC for the decomposition products of o-NPA at the point A in Fig. 1
Fig. 1 のA点におけるo-NPAの熱分解生成物のトータルイオンクロマトグラム

の処理は、ヒューレットパッカード社製 HP9000 シリーズモデル 300 ワークステーションによりオンラインで行った。試料容器は、内径 5 mm、深さ 1.5 mm の蓋付アルミニウム製容器の蓋にピンホールを開けたものを使用した。試料量は 2 〜 3 mg とし、昇温速度は、10 K/min とした。測定は、アルゴンによる加圧下 (3.5 MPa) で行った。これは、NPA の酸化性の中でも最も耐酸性が優れていることから、NPA は加熱すると昇華または蒸発しやすいため、昇温の過程で試料の大半が失われてしまうのを防ぐため、加圧下で行う必要がある。加圧下で行うと、容器をアルゴンによって所定の圧力まで加圧した後、昇温して大気圧に戻す操作を 3 〜 4 回繰り返して内部の残留空気を排除した。これは、昇圧時に酸素が残存していると、その影響によって本来の熱分解以外に酸化分解が生じてしまう恐れがあると考察した。

GC-MS による分析は、（株）島津製作所製 QP-1000A 型装置により行った。GC 検出のカラム充填剤には、Silicone OV-17 (2% on Chromosorb W 80-100 mesh, カラム内径 1 m) を用いた。

Fig. 1 は、NPA の 3 種の異性体の加圧 DSC 曲線を示したものである。o-NPA 及び p-NPA では発熱ピークが 2 段階であるのに対し、m-NPA は 1 段階のみの発熱ピークを示す。熱分解生成物の分析は、各発熱ピークの頂点である A 〜 D 及び F 点と、m-NPA の発熱ピークの立ち
上がりである E 点の各々におけるものを対象とした。

GC-MS 測定は、各温度で昇温を中止し、室温まで冷却した後に容器内の試料をエタノールに溶解させたものについて行った。

2.1.2 実験結果

Fig. 2 ～ 6 は、Fig. 1 の A ～ F の各点における分解生成物の TIC（トータルイオンクロマトグラム）を示したものである。

Fig. 2 に示したとおり、α-異性体の第一段階の発熱ピーク（A 点）では α-ニトロトルエンが主生成物となっている。その後、α-ニトロベンシルアルデヒド、α-ニトロペンジルアルコールも同時に生成している。また、ホルムアミリドも生成している。その後、昇温を続けて第二段階の発熱ピーク（B 点）に至ると、Fig. 3 に示したように α-ニトロトルエンが残存しているほかに少量ながら α-トルイジンの生成が認められるようになる。

なお、上記の各熱分解生成物の同定は、各成分のマススペクトルと、約 4 万種の化学物質の標準スペクトルを用いた GC-MS 装置の自動検索機能によって比較、対照することによって行った。その一例を、ホルムアミリド及び α-トルイジンについて Fig. 7, 8 に示す。

同様に、Fig. 4 に示したとおり、p-異性体の第一段階の発熱ピーク（C 点）では p-ニトロトルエンが主生成物となっており、p-ニトロベンズアルデヒド、p-ニトロペンジルアルコールも生成している。その後、昇温を続けて第二段階の発熱ピーク（D 点）に至ると、Fig. 5 に示したように p-トルイジンの生成が認められるようになる。

一方、m-NPA では、Fig. 6 に示したとおり、発熱の立ち上がり（E 点）では m-ニトロペンズアルデヒドの生成が認められるものの、発熱ピークの頂点（F 点）ではエタノールに可溶な生成物は検出されていない。

2.2 CPP-GCMS 法による測定

2.2.1 実験装置及び方法

強磁性体は、高周波によって誘導加熱されることで急速に発熱するが、その金属の組成で一般的に定まる磁性転移点（キューリーポイント）で常磁性化し、高周波を吸収しなくなる温度が一定（T_f）に保たれる性質をもっている。CPP は、この現象を利用し、強磁性体のホイルで包んだ試料を急速に加熱して熱分解させるものであり、ブレスコック、ゴム等の高分子化合物を熱分解させて GC、GC-MS 等で定性・定量分析や構造解析を行うのに主要して用いられてきた。

ここで用いた CPP は、日本分析工業（株）製の
(a) at the point E in Fig. 1

1 \textit{a-Nitrobenzaldehyde}

\begin{center}
\begin{tabular}{cccc}
\hline
Time (min) & & & \\
5 & 10 & 15 & \\
\hline
\end{tabular}
\end{center}

(b) at the point F in Fig. 1

\begin{center}
\begin{tabular}{cccc}
\hline
Time (min) & & & \\
5 & 10 & 15 & \\
\hline
\end{tabular}
\end{center}

Fig. 6 TIC for the decomposition products of \textit{p-NPA} at the points E and F in Fig. 1

Fig. 6 の E, F 点における \textit{m-NPA} の熱分解生成物のトータルイオンクロマトグラム

(a) observed spectrum of compound 1 in Fig. 2

\begin{center}
\begin{tabular}{cccc}
\hline
m/e & 39 & 66 & 93 & 121 \\
20 & 40 & 60 & 80 & 100 & 120 & 140 & \\
\hline
\end{tabular}
\end{center}

(b) registered spectrum of formanilide

\begin{center}
\begin{tabular}{cccc}
\hline
m/e & 39 & 66 & 93 & 121 \\
20 & 40 & 60 & 80 & 100 & 120 & 140 & \\
\hline
\end{tabular}
\end{center}

Fig. 7 Comparison of mass spectrum of compound 2 in Fig. 2 with the registered spectrum of formanilide

Fig. 7 の化合物 2 のマススペクトルとホルムア＝ニリドの標準スペクトル

(a) observed spectrum of compound 1 in Fig. 3

\begin{center}
\begin{tabular}{cccc}
\hline
m/e & & & 106 \\
20 & 40 & 60 & 80 & 100 & 120 & 140 & \\
\hline
\end{tabular}
\end{center}

(b) registered spectrum of \textit{o-toluidine}

\begin{center}
\begin{tabular}{cccc}
\hline
m/e & & & 106 \\
20 & 40 & 60 & 80 & 100 & 120 & 140 & \\
\hline
\end{tabular}
\end{center}

Fig. 8 Comparison of mass spectrum of compound 1 in Fig. 3 with the registered spectrum of \textit{o-toluidine}

Fig. 3 の化合物 1 のマススペクトルと \textit{o-トルイジン} の標準スペクトル

JHP-3 型装置である。バイロホイルの投入は、同社製のバイオフロー BP-3 型により行った。これは、用いた試料が芳香族ニトロ化合物であり、通常の試料導入方法では誘導加熱を行う前に保溫炉内で試料が蒸発してしまうためである。バイオフローでは、小磁石によって保溫炉外にバイロホイルを保持しており、誘導加熱時には磁力を絶対に保溫炉内にホイルを投入することによりこれを避けることができる。

GC-MS 測定は、DSC-GCMS 法の場合と同じ装置で行った。

2.2.2 実験結果

Fig. 9 は、\textit{o-NPA} を 588K のホイルで熱分解させたときの TIC を示したものである。主生成物は、二酸化炭素及び \textit{o-ニトロトルエン} であり、そのほかにホルムア＝ニリド、\textit{o-ニトロペンゼンアルデヒド} 及び \textit{o-ニトロベンジアルコール} の生成が認められる。

また、Fig. 10 は、733K のホイルを用いたときの TIC であり、\textit{o-ニトロペンゼンアルデヒド} 及び \textit{o-ニトロベンジアルコール} が観測されなくなっている。なお、Fig. 9 及び Fig. 10 のいずれにおいても、\textit{o-NPA}
が観測されており、パイオプローブを用いても試料の一部は誘導加熱時に分解せずにそのまま蒸発してしまっていることが分かる。これは、後述するm-及びp-異性体についても同様である。

Fig. 11は、p-NPAを315°Cのホイルで熱分解させたときのTICであり、o-異性体の場合と同様に二
酸化炭素及び p-ニトロトルエンが主生成物となっており、p-ニトロペンズアルデヒドも生成しているが、p-ニトロペンジアルコールの生成は認めされていない。ホイール温度を733Kに上げると、Fig. 12に示すようにp-ニトロトルエンに対するp-ニトロペンズアルデヒドの割合が588Kの場合より小さくなる。

Fig. 13, Fig. 14は、それぞれm-NPAを588K、733Kのホイールで分解させたものであり、α-, p-両異性体と違った生成物は二酸化炭素及びm-ニトロペンズアルデヒドであり、m-ニトロトルエンの生成は認められない。

3. 考 察

以上のDSC-GCMS法及びCPP-GCMS法による実験結果から、α-及びp-両異性体のDSC曲線における第一段階の発熱は、二酸化炭素及びニトロトルエンが主生成物となっており、脱炭酸反応に起因すると考えられる。

一方、α-及びp-両異性体の第一段階の発熱におけるニトロペンズアルデヒド及びニトロペンジアルコールの生成は、脱炭酸の過程中で副生成し可能性がある、脱炭酸により生成したニトロトルエンから生成した可能性の両者が考えられる。ニトロトルエン異性体の熱分解生成物の分析3)では両者とも検出されていないことから、これらは脱炭酸時に副生成したものと考えられる。

次に、α-及びp-両異性体の第二段階の発熱は、ニトロトルエン、ニトロペンズアルデヒド及びニトロペンジアルコールのDSC曲線での発熱ピークが出現する温度範囲1)で観測されていること、及びニトロペンズアルデヒド、ニトロペンジアルコールが分解温度の上昇によって減少していることから、これら3物質の熱分解に起因するものと考えられる。

また、α-及びp-両異性体の第二段階の発熱では、トルイジンの生成も認められている。これは、ニトロトルエンの熱分解生成物に含まれている3)ことから、ニトロトルエンの分子間酸化還元反応により生成するものであると考えられる。このことは、加圧DSCによる分解より分子間反応が起こりにくいと考えられるCPPによる分解では、トルイジンの生成が認め
Fig. 15 Thermal decomposition products of NPA isomers
ニトロフェニル酢酸異性体の熱分解生成物

熱分解は単純な脱炭酸反応ではなく、ニトロペンズアルデヒドと二酸化炭素が同時に生成する反応が起こっていると考えられる。Fig. 15 は、以上の検討から推定した各異性体の熱分解経路をスキームとして示したものである。
4. 結言

ニトロフェニル酢酸の3種の異性体について、DSC-GCMS法及びCPP-GCMS法の両者で熱分解生成物の分析を行った。その結果、これらの異性体の熱分解機構は以下のよう推定されることが明らかとなった。

1) α-及びp-両異性体のDSC曲線における第一段階の発熱は、主として脱炭酸反応に起因する。
2) α-及びp-両異性体の第一段階の発熱では、脱炭酸過程の副生物としてニトロペンズアルデヒド及びニトロベンジアルコールが生成する。
3) α-異性体の第一段階の発熱では、分子内反応によりホルムアミドも生成する。
4) α-及びp-両異性体の第二段階の発熱では、第一段階の発熱で生成したニトロトルエン、ニトロペンジアルコール、及びニトロベンズアルデヒドの熱分解によるものである。
5) α-及びp-両異性体の第二段階の発熱では、ニトロトルエンの分子間酸化還元反応によってトルエンも生成する。

6) m-異性体の発熱では、単純な脱炭酸反応ではなく、二酸化炭素の脱離とニトロペンズアルデヒドの生成が同時に起こっている。

(平成4年4月14日受理)

参考文献

1) 安藤隆之・森崎繁, 反応性物質の化学構造と熱安定性の関係 (第1報), 産業安全研究所研究報告 RIIS-RR-86 (1986), 135-145.
3) 原泰毅・松原宏之・長田英世, ニトロ化合物の熱反応性 (第11報), 工業火災協会誌, 38-6 (1977), 338-343.