Research Reports of the Research Institute of Industrial Safety, RIIS-RR-91, 1991 UDC 53.082.72,537.29,628.5

両極荷電ミストの静電凝集に関する一考察

山隈繁臓*, 児玉 勉*, 田畠泰幸*

A Study on Electrostatic Coagulation of Bipolarly Charged Mists

by Shigezo YAMAGUMA*, Tsutomu KODAMA* and Yasuyuki TABATA*

Abstract; In some industrial processes such as rolling and cutting, a large amount of mists can be generated from machinery by the vaporization of cooling oils, lubricants etc. and are often dispersed in environment for a long time. Some mists are inflammable or toxic. Hence, they may cause serious labor accidents such as fires and explosions or aggravate workplace environments. At present, electrostatic precipitators, bug filters and scrubbers are widely used to cope with such hazardous particulate materials. However, particles of several micrometers or below one micrometer are difficult to be treated because of their small size. For example, those small particles have insufficient electrification capabilities. So it is inevitably important to enlarge the size of mist particles in order to efficiently treat them with electrostatic methods.

In this study, a method in which oil mists are divided into two portions, where positive and negative charges are separately given and then mixed together again, was employed. In this method, rapid coagulations of particles were confirmed through observation of the size distribution changes. We carried out both experiments and computer simulations to clarify basic characteristics of charged mists, the mechanism of electrostatic coagulation and important parameters to enhance coagulations.

The results are summarized as follows:

(1) After mixing bipolarly charged mists, their distribution shapes change from the original "one-peak" type to "multi-peak" type as time passes. The median diameters also become larger as the charging currents of the corona chargers increase. For example, when \pm 35 μ A were applied, the median diameter of mists almost doubled within two minutes – from 0.86 μ m to 1.6 μ m.

(2) The computer simulations show that electrostatic coagulations are caused mainly by coulomb forces exerted among charged particles. It is also revealed that the time needed for a certain number of coagulations to occur is inversely proportional to the square of the amount of initial charges of mists and directly proportional to the cube of initial distance between two adjacent particles.

(3) According to the computer simulations, if mists are unequally charged, the number of

particles which collide more than twice becomes much larger. This suggests that unequal charging may produce larger particles than equal charging.

Keywords; Oil mist, Submicron, Electrostatic Coagulation, Bipolar charging, Air pollution

1. 緒 言

圧延,切削等の生産工程においては,工作機器類 の潤滑または冷却のために使用される油が飛散また は気化・凝縮してオイルミストを形成するケースが 多々みられる。このオイルミストは,爆発・火災の原 因となったり,あるいは作業場内に拡散して労働環 境を悪化させるのみならず,屋外に排出されて大気 汚染の一因ともなっている。

現在,オイルミストを含む不要なダスト・ミストの 除去方法として広く採用されているものの一つとし て,電気集塵機や空気清浄機のようにミスト粒子を 帯電させ,これに強力な外部電界による静電気力を 作用させるという手法がある。この手法は,粒径が 数 10 µm 程度のダスト・ミスト粒子に対しては非常 に有効であるが,数 µm 程度以下のいわゆるミクロ ン粒子または1 µm 以下のサブミクロン粒子(以下 これらを総称して微粒子という)になると,帯電量 を大きくすることが困難になるため,除去効率が大 幅に低下することはよく知られている。特に,前述 のような生産工程で発生するオイルミストはサブミ クロンからミクロン領域へ及ぶ粒径分布を持った多 分散型エアゾルであるので,静電気力を利用して完 全に除去することは困難である。

微粒子への荷電機構には拡散荷電と電界荷電の2 種類があり、前者は粒径に、後者は粒径の2乗にほ ぼ比例することから、微粒子への荷電量の減少は本 質的なものであるので、充分な静電気力を作用させ るためには、前処理として何らかの手法で粒径増大 を実現する必要がある。

粒径増大のための基本的な手法は、微粒子の相互 運動を活発にして、複数の粒子を衝突・付着(凝集) させることであり、これまでに具体的な方法として、 超音波の音響エネルギー(疎密波)を利用して微粒子 を振動させる方法¹⁾、微粒子を荷電させて交番不平等 電界中で振動させる方法²⁾、ダスト流を二手に分け、 それぞれを別の極性で荷電し、再度合流させて、異 極性粒子間に働く静電気力(クーロン力)を利用し

Fig. 1 Schematic of experimental set-up 静電凝集装置の概要

て衝突させる方法³⁾が提案されており,それぞれ凝集 効果が報告されている。しかしながら,これらの手 法は機器の構成が比較的複雑であり,かつ,対象が 高密度のダスト粒子(固体)であるため,比較的低 濃度の液体ミストへそのまま適用するには更に工夫 が必要である。

筆者らもかつて,生産工程でよくみられる比較的 低濃度の多分散ミストを効率よく凝集させ粒径を増 大させることを目的として,機器構成が簡単で,か つ大きな電気エネルギーを必要としない両極性荷電 粒子のクーロン力による凝集作用に着目し,両極荷 電乱流混合式凝集装置を試作しミストの凝集実験を 行った。しかし,その時は連続法であったため,粒径 分布が単峰型から双峰型へと変化し,静電凝集によ る粒径増大効果が起こり得ることを明らかにするこ とはできたが,粒径増大は,メディアン粒径でみて たかだか 5%程度に留まった。⁴⁾

そこで、今回は、より静電凝集効果を高めるために バッチ的に両極荷電ミストを凝集させる方法を試み、 また、静電凝集の機構を解明するためにコンピュー タシミュレーションを行った。その結果、ブラウン運 動による凝集作用がほとんどみられない程度の低い 濃度条件においても、微粒子の帯電量及び初期濃度 を制御することにより効果的に静電凝集を引き起こ すことが可能であるという見通しを得たので、以下 にその結果について報告する。

Fig. 2 Charging property of corona chargers コロナ荷電器の荷電特性(放電電流対電荷密度)

2. 両極荷電ミストの静電凝集に関する実験

2.1 実験装置および実験方法

両極荷電ミストの静電業集実験装置の概要を Fig. 1 に示す。この実験装置はアクリル製であり、試料とな るミストを蓄える容器(ミストプール。容量 128ℓ),ミストに電荷を与える正極性及び負極性の 同軸円筒型コロナ荷電器(直径 50 mm, 長さ 50 mm)及び荷電されたミストを混合・凝集させる混 合部(容量12ℓ)から成る。ミストの粒径分布測定に は、粒径分析装置(空気力学的粒径測定装置。TSI 社 製 APS-3310) を用いた。ミスト原料としてはフォグ リキッドと呼ばれる高級アルコールの一種(分子式: HO(CH₂CH₂O)_nCH₂CH₂OH), 比重 1.1, 比誘電率 40)を使用し、フォグマシーン(発煙器)により霧 化した。また、ミストプール→荷電器→混合部という ミストの流れは、混合部上部の孔から吸引ブロワー で吸引することによって引き起こした。今回の実験で は, Fig. 2 に示すように、ミストへの荷電量は、正・ 負極性ともにコロナ荷電器の放電電流の大きさと比 較的良い相関関係にあることが判明したので、凝集 実験毎に正・負放電電流の大きさを同じ値にセットし た。実験の手順は次の通りである。

- 正・負極性各荷電器に直流電圧を印加し、放電 電流を所定の値にセットする。
- (2) フォグマシーンにより発生させたミストをミス

- (3)吸引ブロワーによりミストの流れを作り、正・ 負極性各荷電ミストを混合部へ導入する。適当 な濃度となったら吸引ブロワーを停止し、荷電 ミストが混合部に留まるようにする。
- (4) 混合部の側面中央付近に開けた小孔から挿入し たサンプリングチューブを用いて,吸引ブロワー 停止直後から約 20 秒間隔でミストの粒径分布 を測定する。

2.2 実験結果及び考察

2.2.1 粒径分布の変化からみた静電凝集の効果

Fig. 3 は、電荷をまったく与えていない場合のミ ストの粒径分布を示す。この粒径分布は、0.8 μ m 付 近に高いピークをもち、そこから大径側にやや裾を 広げた単峰型である。個数濃度は、混合部へ導入直 後(凡例 "0sec"のもの。ただし、実際は測定器の特 性上約5~10秒後に約5秒間サンプリングしたミス トの平均濃度及び粒径分布である。以下各凡例につ いても同様。)で約 $3.6 \times 10^5 \text{ (個/cm}^3$ であり、約2分 経過後もこの濃度にはほとんど変化はなく、また、粒 径分布にもほとんど変化はみられない。このことは、 本実験の範囲内では、ブラウン運動に起因する凝集 現象は無視できるほどの頻度であり、重力による微 粒子の沈降もほとんど生じていないことを意味して いる。言い換えれば、熱運動及び重力以外の力が微 粒子に作用しない限り、ミストは長時間安定して空

0.12

Fig. 4 Size distribution of bipolarly charged mist (charging current: 10 µA) 両極荷電ミストの粒径分布(荷電電流: 10 µA)

charged mist (charging current: 20 µA) 両極荷電ミストの規準化粒径分布(荷電電流: 20 µA)

Sampling time 0 sec 0.1 concentration 60 sec ☆-- 120 sec 0.08 Normalized number 0.06 0.04 0.02 0. 0.5 1 0.1 Diameter $[\mu m]$

Fig. 5 Normalized size distribution of bipolarly charged mist (charging current: 10 µA) 両極荷電ミストの規準化粒径分布 (荷電電流: 10 µA)

Fig. 7 Normalized size distribution of bipolarly charged mist (charging current: 35 µA) 両極荷電ミストの規準化粒径分布(荷電電流: 35 µA)

間に存在する。

Fig. 4 及び Fig. 5 は,両コロナ荷電器の放電電流 をそれぞれ+10 μA(放電電圧+7.5 kV),-10 μA (同-6.3 kV,以下省略)に設定したときの混合ミス トの粒径分布変化を示している。前者は絶対値で表 わした粒径分布,後者は総個数濃度で規準化した粒 径分布である。Fig. 4 によれば総個数濃度が時間と ともに大きく減少することが分かる。これは,静電 凝集によって複数の微粒子が1個の肥大した微粒子 になること,及び正負いずれかの電荷が過剰である ために過剰な極性の荷電微粒子が静電分散によって 測定空間から離散してしまうこと,の相乗効果と考 えられる。絶対値による粒径分布の表現では静電凝 集による粒径増大に着目した粒径分布の変化の模様を

放電電流とメディアン粒径の関係

Fig. 6 及び Fig. 7 は,放電電流を± 20 μ A (+8.5 kV, -7.2 kV)及び± 35 μ A (+9.7 kV, -8.2 kV) とした場合の粒径分布である。Fig. 5 と比べると,粒 径分布はより明瞭に多峰型へ変化している。粒径分 布の時間的な変化に注目すると± 20 μ A, ± 35 μ A 双方とも,最初に双峰であったものが,時間の経過 とともに大径側 (2.3 μ m 付近)にさらにもう一つの 峰が現れ,かつ,小径の峰の高さは徐々に低くなって いく。この変化は± 35 μ A の方がより顕著である。 以上の現象は、ミストへの荷電量が大きくなるほど 静電凝集がより活発になり、その結果粒径の増大効 果も高まることを意味するものである。

2.2.2 粒径増大に影響する因子

ミストの帯電量と静電凝集による粒径増大の関係 をより簡単に把握するために, Fig. 8 に示すように, 放電電流とミストのメディアン粒径(粒径の代表値) の関係をプロットした。同図によれば, 放電電流の 増加に伴ってメディアン粒径が大きくなり, かつ, 時

メディアン粒径の時間変化

間的な粒径変化の幅も広がることが分かる。

時間的な変化に着目してプロットしたのが Fig. 9 である。この図では、前述のように、実際のサンプ リング時間が図に示す時間よりも5~10秒遅れてい るため、0秒におけるメディアン粒径は放電電流値に よって変化している。各電流値についての粒径変化 をみると、放電電流が大きいほど粒径増大の速度が 大きく,いずれも 40~50 秒を経過すると増大の速 度は緩慢になる。これらの現象は、初期の帯電量が 大きいほど静電凝集は急速に起こるが、同時に正・負 電荷の中和によって総帯電量が減少する割合も大き くなるので、やがて静電凝集の頻度が初期帯電量の より少い場合と同程度にまで低下することを意味し ているものと考えられる。言い換えれば、粒径増大 を早期に成し遂げるためには、できるだけミストへ の初期荷電量を多くする必要があること、及び中和 によって失われた電荷を再荷電等で補充することに より凝集の発生をある程度維持できることを示唆す るものである。

3. 静電凝集に関するコンピュータ シミュレーション

3.1 コンピュータシミュレーションの方法

外部電界の存在しない空間中においては,強く荷 電された帯電微粒子は,主として熱運動(ブラウン

Fig. 10 Flowchart of computer simulation 静電凝集シミュレーションのフローチャート 運動)及びクーロン力による粒子間の相対的な運動 によって衝突・凝集するものと考えられている⁵⁾。こ れら微粒子に作用する力のうち、ブラウン運動によ る凝集は微粒子の帯電量に関係なく生じ、ミストの 濃度が 10⁶個/cm³程度を超えるような高濃度の場合 には頻繁であるが、それ以下の濃度では、理論的に も経験的にも無視し得る程度の頻度となることが分 かっている⁶⁾。従って、本稿では帯電微粒子がもっぱ らクーロン力により運動し、衝突・凝集を生じるもの としてモンテカルロ法を応用したシミュレーション による数値解析を行った。

Fig. 10 にコンピュータシミュレーションのフロー チャートを示す。まず、平均粒径 1 μ m,幾何標準偏 差 1.2 の対数正規分布^{*1} となるように微粒子 60 個 を発生させる。次に各粒子にその粒径に応じた電荷を 付与する。今回は簡単のため、粒子の帯電量は、(1) 式に示す Pauthenier の飽和帯電量⁸⁾を有するものと し、60 個の粒子すべてに正の電荷を付与した^{*2}。同 様に、同じ粒径分布をもつ 60 個の微粒子を別に発生 させ、負の電荷を付与した。これにより、同じ粒径分 布・帯電量をもった正極性荷電ミストと負極性荷電ミ ストが存在することとなる(ただし、帯電量につい ては、正と負で絶対値が異なる場合も試行した)。

$$q_{\max} = 4\pi\varepsilon_0 a^2 E_c \frac{3\varepsilon_s}{\varepsilon_s + 2} \tag{1}$$

ここで、 q_{max} [C] は飽和帯電量、a [m] は微粒子 の半径、 E_c [V/m] は荷電電界、 ϵ_0 [F/m] は真空の 誘電率、及び ϵ_s は微粒子の比誘電率である。なお、今 回は実験に使用したミストに合わせて ϵ_s =40 とした。

各粒子は,(2)式に示す運動方程式に従って運動す るものとする。なお、この運動方程式においては、重 力の影響は、凝集にはほとんど寄与していないもの として無視している。また、粒径が小さくなるほど 顕著となる粒子表面での"すべり"の影響について も、今回は考慮しないこととした。今回の粒径範囲 (0.5 μ m ~ 1.5 μ m)ではすべり補正係数は、約 1.3 ~ 1.1 であるので、試行結果に大きな影響を与える ことはないと考えられる。

^{*1} 単一発生源から発生する粒子状物質の粒径分布は、ほぼ対数正 規分布になることが分かっている⁷⁾ので、本稿でもこれを多分散ミ ストの典型的な分布形状とみなし採用した。

^{*2 (1)} 式によれば荷電量は荷電電界 E_c に比例するので、 E_c =2.5 kV/cm とすれば 34 μ C/g となり、前章の実験値に近い値となる。

$$m\frac{d^2\dot{r}}{dt^2} = \dot{F} - 6\pi\eta a \frac{d\dot{r}}{dt}$$
(2)

ここで、m [kg] は微粒子の質量、 \dot{r} [m] は微粒子 の位置ベクトル、 \dot{F} [N] は微粒子に作用する静電気 力 (クーロン力)、 η [Pa·s] は空気の粘性係数、t [s] は時間である。なお、m は、実験に使用したミスト に合わせて比重を 1.1 として計算した。

試行開始時には、各粒子は、二次元空間の正方形 領域をさらに縦横 10×10 の微小正方形に分けたと きの、各微小正方形の頂点にランダムな順序で配置 されるものとする。(この場合、頂点の数は全部で 11×11 = 121 であるので、うちひとつの頂点には粒 子は配置されていない。)従って、試行開始時には隣 接する粒子間の距離はすべてが等しい。

(2) 式の運動方程式は、オイラー法*3 を用いて倍 精度で数値計算する。計算の各ステップ毎にすべて の粒子間の距離を計算し、もし、任意の2つの粒子 間の距離がそれらの半径の和以下となったら凝集し たとみなす。この時、これらの電荷量、質量の和を一 方の粒子に新しい値として与え、他方の粒子は、質 量、電荷ともに零(粒子の消滅)とする。すなわち、 凝集によって2個の粒子は、より大きな一個の粒子 になったことになる。

Fig. 12 Change of size distribution of unequally charged particles (computer simulation) 不平衡荷電粒子の粒径分布変化(シミュレーション)

なお,各微粒子間の初期間隔は,静電気力を大き くして凝集を速め,数値計算に要する時間を短縮す るため,20 ~ 60 μ mの値とした。

3.2 コンピュータシミュレーションの結果および考察

3.2.1 粒径分布の時間変化

Fig. 11 に正・負両極性の電荷分布が等しい(以下 「平衡」という)場合の粒径分布の変化の様子を示す。 同図では、凝集の起こった回数をパラメータとして 描いている。凝集回数が増加するにつれ、粒径分布 が初期の単峰型(対数正規分布)から、徐々に多峰 型へ変化を始め、たとえば 30 回のときは、0.92 μ m、 1.27 μ m 及び 1.42 μ m の 3 つの峰をもち、さらに、 凝集回数が増加すると 1.42 μ m へ最高点が移動して いく。そして、ほぼ全部の粒子が凝集を起こした時 (凝集回数 60 回)には、1.42 μ m をピークにもつ単 峰型の分布に変化する。この時のメディアン粒径 d_m は 1.36 μ m となり、凝集が起こる前の 1.0 μ m と比 べてかなり大きくなっている。

Fig. 12 は,正・負極性の電荷分布が異なる場合 (以下「不平衡」という)の粒径分布の変化を示すも のである。この場合,同径の粒子の帯電量は,負極性 が正極性の2.5 倍となっている。平衡の場合と同じ凝 集回数について比較してみると,不平衡の方が粒径 の分布の変化(特にピークの変化)は若干緩やかで

- 129 -

^{*&}lt;sup>3</sup> 一般的なルンゲクッタ法に比べて計算誤差の含まれる可能性 は若干高くなるが、計算量を少くすることができるのでこれを採用 した。

Table 1 Coagulation times and median diameters under different charging conditions (computer simulation) 荷電状態とメディアン粒径 (シミュレーション)

Coagulation numbers	Charging condition	
	Balanced [µm]	Imbalanced ¹ $[\mu m]$
0	1.00	1.00
10	0.995	0.995
20	1.01	1.01
30	1.06	1.06
40	1.21	1.18
50	1.30	1.26
60	1.36	1.33
$Eliminated^2$		1.43

1: Negative charges are 2.5 times larger than corresponding positive ones.

2: Particles not collided are neglected in calculation.

あるが、一方、最大粒径は凝集個数 60 回の時、平衡 の場合が 2.2 μm であるのに対し,不平衡では 2.45 μm となっている。また、凝集回数毎の d_m (Table 1) をみると,不平衡の方が若干小さい。これは,不平衡 の場合のほうが、1個の微粒子が2回以上凝集にかか わる機会が多く、同時に、1回も凝集しないものも多 いことをことに起因するものである(たとえば、凝 集回数 60 回の場合, 2 回以上凝集した微粒子の数は, 平衡では9個,不平衡では25個であった)。しかし ながら、過剰電荷となった極性の微粒子のうち、凝集 によって電荷を低減したもの以外は静電分散によって 観測領域から除外されるものと仮定すれば, Fig. 12 に凡例 "eliminated" で示される分布のように大径粒 子の場合が増加 $(d_m = 1.43 \ \mu m)$ することになる。 不平衡の場合のこの特徴は、現実の静電凝集の場合、 粒径の増大効果が予期される値よりも大きく観測さ れることがあることを示唆するものである。いずれ にせよ、平衡及び不平衡の場合の粒径変化は、前章 の実験で得られた変化パターンとよく符号する。

3.2.2 粒径増大の速度

Fig. 13 は、平衡荷電の場合について、荷電電界 *Ec* を 2.5 kV/cm, 5 kV/cm および 10 kV/cm に変化 した時のそれぞれの粒径増大のパターンを示すもの

Fig. 13 Change of median diameter of equally charged particles (computer simulation) 平衡荷電粒子のメディアン粒径変化(シミュレーション)

Fig. 14 Charging field v.s. time for coagulation (computer simulation) 荷電電界と凝集時間の関係(シミュレーション)

である。この図から、荷電電界すなわち荷電量が大 きいほど静電凝集による粒径変化が急であり、かつ 早く飽和値に達することが分かる。このパターンも 実験の結果 (Fig. 9) とよく似ている。

3.2.3 粒径増大に影響を与える因子

Fig. 14 は、初期粒子間距離を 20 µm 一定とし、 荷電電界をさまざまに変化して、ある一定の凝集回 数が達成されるまでの時間を示すものである。 これ

- 130 -

ション)

によれば、凝集に要する時間は、荷電電界、すわな ち帯電量のほぼ2乗に反比例して短くなる。これは、 (2) 式の運動方程式の左辺(慣性項)が右辺(外力序 及び粘性項)に比較して無視できるほど小さい*4の で、(3) 式のように微粒子の運動速度がクーロン力に 正比例するためと考えられる。

$$\frac{d\dot{r}}{dt} = \dot{v} = \frac{\dot{F}}{6\pi\eta a} \tag{3}$$

但し, *v* [m/s] は、 微粒子の運動速度である。

(3) 式によれば、たとえば、全体の帯電量を2倍に すると、ある帯電微粒子に作用する電界も2倍にな り、かつ、その帯電微粒子の電荷量も2倍になって いるので、同粒子に作用する力は4倍になり、結局 移動速度も4倍になる。目的の微粒子までの距離は 一定であるので、所要時間は1/4となる。

Fig. 15 は、荷電電界を 10 kV/cm 一定とし、初期 粒子間距離をさまざまに変化して、ある一定の凝集 回数が達成されるまでの時間を示すものである。こ の場合には、凝集に要する時間は初期距離のほぼ 3 乗に比例して長くなる。この理由も上記と同様に説 明できる。すなわち、初期距離が 2 倍になれば、あ

ョン)

る帯電粒子に作用する電界の強さは 1/4 となり,移 動速度も 1/4 となる。一方,距離が 2 倍であるので, 結局目的の帯電粒子に達するまでの 8 倍の時間を要 することになるのである。

3.2.4 実験との比較

前章の実験で用いたミストの粒径分布は本シミュ レーションのもの(対数正規分布)とは若干異なるの で厳密な比較は困難であるが,前項での議論が成り 立つと仮定して,実験とほぼ同様の初期濃度(2× $10^5/cm^3$ 。初期粒子間距離170 μ mに相当)と電荷 密度(34 μ C/g。荷電電界2.5 kV/cmに相当)を 使ってメディアン粒径変化をプロットしたものがFig. 16 である。この図によれば粒径の変化はほぼ試行開 始後70~80 secに頭打ちとなっている。これを実 験で得られたFig.9(放電電流30 μ A)と比較する と,粒径増大がほとんどみられなくなるまで時間は ほぼ一致している*⁵。従って,本シミュレーションで 仮定した力学的な条件は,現実の静電凝集を近似的 に記述するのには充分であると結論できよう。

4. 結 言

サブミクロンからミクロン領域の微粒子の凝集に よる粒径増大を目的として正・負極性に荷電した多 分散ミストの混合による静電凝集に関して実験及び コンピュータシミュレーションを行った結果,以下の ことが明らかとなった。

^{*&}lt;sup>5</sup> 既述のように, 測定器の性能上, 両極荷電ミスト混合直後の粒 径分布を得ることはできない。

- 132 -

- (1) 初期の単峰型の粒径分布は,静電凝集の進行とともに徐々に多峰型に変化していき,最終的にはより大径の粒子からなる単峰型へと変化していく。この変化の速度は,微粒子への荷電量が大きいほど,また,初期粒子間距離が小さい(濃度が高い)ほど大きくなる。
- (2) 正・負いずれかの極性の帯電量が他方に対して 過剰となっている時は、2回以上の凝集が起き る確率が高くなり粒径増大効果が高まることが ある。ただし、静電分散と静電凝集の同時進行 により、静電凝集によるメディアン粒径増大の 効果が誇張されて観測されることがある。
- (3) 帯電粒子間のクーロン力のみを作用力とした静 電凝集のシミュレーションは、実験で得られた 変化のパターンをよく再現することができ、一 定の凝集回数に達するまでの時間は、帯電量の 2 乗に反比例、また、初期粒子間距離の3 乗に 比例して短くなることが明らかとなった。

謝 辞

石川島播磨重工業株式会社技術研究所応用科学研 究部研究員荻原正明氏には、流動研究員として本研 究全般にわたり数多く討論に参加いただき、また数々 の貴重な助言をいただきましたので、ここに謝意を 表します。また、本研究の一部は、環境庁特別研究 『静電気による粒子状物質の環境への飛散防止に関す る研究』(昭和 63 年度~平成 2 年度)の下で実施さ れたものである。

(平成4年4月20日受理)

参考文献

- 中根偕夫・平田尚史・瀬谷浩一郎,集塵電極間に 超音波を照射した場合の集塵の様子,静電気学 会講演論文集,(1990), pp. 249-250.
- 2) 渡辺恒雄・須田知孝,サブミクロン粒子の高効 率集塵方式の開発―静電凝集装置内蔵型電気集 塵方式の凝集作用と集塵効率,電力中央研究所 研究報告,(1989-11),pp. 1–34.
- 金沢誠司・矢羽田庸喜・赤峰修一・大久保利一・野本 幸治・足立宜良,二類荷電ダストの静電凝集効果, 静電気学会講演論文集,(1991), pp. 197–198.
- 山隈繁臓・児玉勉・田畠泰幸・荻原正明,両極荷 電ミストの凝集に関する一考察,静電気学会講 演論文集,(1991), pp. 205–206.
- M. Adachi K. Okuyama and Y. Kousaka, Electrostatic Coagulation of Bipolarly Charged Aerosol Particles, J. Chem. Eng., 14-16 (1981), pp. 467-473.
- ウィリアム C. ハインズ・早川一也監訳, エアロ ゾルテクノロジー, (1985), 231, 井上書院.
- 7) 同上, 231.
- M.M. Pauthenier and M.M. Moroau Hanot, La charge des paticules sheriques dans champ ionise, Journal de Phyque, 35–12 (1932), pp. 590–613.