Threshold of Convulsion for Electric Shocks due to Underwater A.C. Uniform Electric Fields

by Eiki YAMANO* and Tatsuo MOTOMA*

Abstract: Working in the water, as a sea, river, etc. and use of electricity in such areas are being increased in recent years. These situations may involve divers in-hazards of underwater electric shocks. This paper reports an investigation of such hazards.

An experiment was conducted with rabbits to find the threshold of convulsion about electric shocks due to a.c. uniform electric field under water. In the experiment, a hair-clipped rabbit was immersed in plexiglass water tank, and exposed to underwater electric field for 20 min per test. During the test, it was observed whether the convulsion (i.e. extension in hind legs or whole-length) occurred or not. The extension of short duration was also counted as a convulsion.

The applied electric field was 50 Hz sinusoidal wave, and the 3.5 % salt water, with a temperature of 30 °C and a conductivity of 6 S/m, was used. Water level in the tank was adjusted before the experiment to such an extent that the rabbit was able to walk, which was 14.7 cm in depth on the average.

From the results, the cumulative distribution curves were derived for maximum non-convulsing and minimum convulsing field intensities, and the threshold field intensity for the general population was estimated by the curves.

The results of investigation are summarized as follows:
1. The average of individual minimum convulsing field intensities tested on 9 rabbits was 5.33 V/m and the range of data was between 4.03 and 7.27 V/m.
2. The average of maximum non-convulsing field intensities tested was 4.5 V/m and the data ranged from 3.03 to 6.30 V/m.
3. The threshold convulsing field intensity, i.e. the limit of motility, for the population will be in the range between 1.1 and 1.9 V/m, in the uniform electric field under water. The values of 1.1 and 1.9 V/m are the 0.5 percentile ranks of the individual maximum non-convulsing and minimum convulsing field intensities, respectively.

Keywords: Electric Shock, Underwater Electric Shock, Threshold, Underwater Work, Industrial Safety

1. はしがき

陸上の電撃の危険性については、既にある程度の実験データが蓄積され、相当の知識が得られている。しかし、水中の電撃危険性や生体の反応のしきいについても、実験データが不十分で、陸上の電撃に関する知識を基礎とした推定にとどまっている場合が多い。そしてこの推定は、むしろ工学的な判定基準の設定に近いものである。例えば、SmootとBentelは人間に対する陸上の安全電流を5 mAとし、これが水中でどの程度の電圧や電界に相当するかを実験によって調べた。また、Moleは、もし胸部を覆う潜水服を着用している
ならば陸上の限界が適用できるとし、これに断定的に決められる安全係数を適用して水中の限界を求めている。

本研究では、ウサギを用いた水中電撃の実験によって、直接的に、けいれんのしきい（発生限界）を求めた。また、これを基に、けいれんの発生しない水中電界の限界を推定した。観察したけいれんは外見上の反応であるが、これが発生しなければ随意運動の可能性は十分にあるので、けいれんの不発生限界を可隨限界（随意運動の可能な電撃の限界）と呼ぶこともできる。この限界は、水中作業者の安全を考慮し、自力で、漏電している水中等の危険な領域から脱出できるかどうかの基準となるもので、水中の電撃危険性の評価に重要な一つの指標である。

既に筆者らは、水中の、下肢の強直に対する許容限界として2.5V/mという推定値を発表し、これ以下の電界においては、随意運動のできる可能性が高いことを述べた。しかし、この値は、下肢の強直けいれんの発生下限に、推測による安全係数を適用して求めたものであった。このため、この便宜的な限界が、どの程度随意運動を保証するかについては、あいまいさが付きまとう結果となった。したがって、本研究では、

軽微なけいれんを含めて、その発生限界と不発生限界を測定し、その累積頻度分布を求めた。これによると、上述した2.5V/mにおける累積頻度や、より妥当性の高い可随限界の推定等が可能になる。

2. 実験方法

2.1 実験方法の概要

Fig. 1に実験方法の概要を示す。すなわち、水槽の塩水にウサギを入れておき、通電してウサギを水中の電界に暴露しながら、けいれん発生の有無を監視する。1回の暴露試験は20分間で、試験と試験の間に10分以上の休憩時間をおき、電界を増加させて試験を繰り返した。

印加電圧は、50Hzの正弦波交流で、交流安定化電源の出力をいったん約13Vに降圧し、これをスライダックで調整して電界が設定目標近くになるようにした。通電電極は、厚さ1.5mmの銅板で、Fig. 1のように水槽の相対する2面に平行に配置した。通電電極間の距離は1.73mである。

水中の電界は、平行に張った2本のプラチナ線を検出電極として、その間の電位差を測定し、これをその

Fig. 1 Schematic diagram of experimental setup.

実験方法の概要
間の距離1.694mで割って求めた。
各試験において少なくとも3回、暴露の始めの頃、
中間、及び終わり頃に、けいれんが生じないかどうか
の点検、及び水中の電位差の測定等を行なった。ま
た、電流の変化の大きい場合は印加電圧の再設定を行
なった。

2.2 水槽、水、及びウサギに関する条件
実験水槽は、鍼のフレームで被密閉されたアクリルの
直方体容器で、内側の長さ177cm、幅97.4cm、深さ
67.7cmである。水槽には、電流、及び検出電極のほか
に、ウサギから検出電極を保護するための防護板を水
面より上に設置した。
水は塩水、すなわち、並塩（塩化ナトリウム95％以
上、日本たばこ産業）の3.5％溶液で、ほぼ海水の濃度
に相当する。水温は、あらかじめ加温して、実験中に
約30℃となるようにした。このとき、水の導電率は約
6 S/mとなった。また、水は1日使用したら取り替え
た（実験は午後ののみ）。
水深は、ウサギが上肢の前腕（ひじより先）をまっ
すぐに立てて水槽底に着いたとき、胸の厚さの半分か
ら2/3くらいまでが水面下になる程度とした。水深は、
実験前にウサギに合わせて調節したが、多くの実験で
14.5cmであった。この水深で、下肢のひざをまげて
しまうとウサギの頭部は完全に水面下となる。また、
初めはあごの下まで水面下であるが、ある程度時間が
経つと、口と鼻の中間まで浸水した状態となる。
実験中のウサギは、水槽の底に足を置いており、自
由に動けることができるようになっている。ウサギは、
体表の電気抵抗を減少させるために、あらかじめ、パリ
カンで脚及び手足の毛を刈り取っておいた。このた
めに麻酔薬を使用したが（耳の血管に、体重1kg当た
り約0.5mlのネプチール溶液を注射）、実験には麻
酔の覚めたものを使用した。

2.3 けいれんの不発生の点検方法
水中のウサギは、始めの数分くらいは比較的活発に
動き回るが、やがて動きが減少し、座っていることが
多くなる。しかし、この状態ではけいれんが生じにく
い。したがって、単に通電中のウサギの様子を観察す
るだけでなく、けいれんを誘発するようなきっかけを
与えて、けいれんの不発生を点検、確認した。
けいれん不発生の点検は、「引き伸ばし」、すなわち
手でウサギの上肢と下肢をつかみ、Fig. 2のように電

表1 Summary of experiments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Average±s.d.</th>
<th>range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of experiments</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Weight of rabbit</td>
<td>3.92±0.64 kg</td>
<td>2.96−4.87</td>
</tr>
<tr>
<td>Depth of water</td>
<td>14.7±0.4 cm</td>
<td>14−15.5</td>
</tr>
<tr>
<td>Temperature of water</td>
<td>30.8±2.1 ℃</td>
<td>28.8−33.9</td>
</tr>
<tr>
<td>Conductivity of water</td>
<td>6.02±0.22 S/m</td>
<td>5.72−6.38</td>
</tr>
</tbody>
</table>
は時間の経過に従って減少し、例えば導電率の減少は実験の前後で3〜4％前後であった。また、麻酔下のウサギの腋下体温は約39℃であった。

Table 2 には実験結果、すなわち、各実験No.ごとに試験電界の強さを試験順に並べ、けいれん発生の有無に従って区分した結果を示す。電界算出に使用した電位差の、ウサギの出し入れの変化は十分に小さく、表に示した電界は、ウサギが居ないときの水中の電界に等しい。

観察されたけいれんには、引き伸ばされた下肢の回復が不自然で少し遅れる程度から、下肢の途中半端な伸びがある程度持続（数秒〜数分）して元に戻るもの、上肢・胴体・下肢にわたる全身的な伸展等。種々の程度の反応が含まれている。また、下線を付したデータは全身的なけいれんの生じた試験電界である。全身的なけいれんを起こしたウサギは、平衡を失って横転した。

実験3及び5では、最初の試験電界でけいれんが発生したので、最大けいれん電界は測定されていない。しかし、それらの値を仮にx_1, x_2と置くと、$x_3\leq 4.99$及び2.50 $< x_3 < 4.03$は実験の結果ということができ る。ただし、2.50 V/mは、実験5のウサギを前に他の目的の実験（2.5 V/mの水中電界への100分間暴露）に使用し、けいれんの起こらないことが確認された電界の強さである。

Table 3 Effects of exposure to minimum convulsing test field intensities.
けいれん発生・最小の試験電界に対する暴露結果

<table>
<thead>
<tr>
<th>Exper. No.</th>
<th>The 1st convulsion</th>
<th>Effects of exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trigger of occurrence</td>
<td>Time from start of test (min)</td>
</tr>
<tr>
<td>1</td>
<td>Fall after jump</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Starting to run</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>The 3rd checkup</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>The 1st checkup</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>The 2nd checkup</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>The 1st checkup</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>The 1st checkup</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>The 1st checkup</td>
<td>0.5</td>
</tr>
<tr>
<td>9</td>
<td>The 2nd checkup</td>
<td>18</td>
</tr>
</tbody>
</table>

*1 Number of Checkups includes the examinations of occurrence of convulsion by "stretch and release" method only.
*2 Extension in whole-length (at the 2-th checkup). Heavy effect.
*3 Motility was recovered after convulsions (extensions mainly in hind legs).
*4 Slight extension of short duration in hind legs. Slight effect.
水中電撃によるけいれんのしきい値と可随限界

このきっかけは、2回の例外を除き、すべて引き伸ばしによるけいれん不発生の点検である。例外の1例は実験1で起こり、ウサギが自発的に水槽の壁に向かって跳躍し水中に落下したことがきっかけとなった（跳躍・落下5回の内、2回のけいれんが発生）。Table 2の実験1から実験2の無けいれん・最大の試験電界までは、不発生の点検方法は「運動催促」であった。

例外の2例は実験2の場合で、ウサギが底を知って通電方向に走りだしたときに発生した。また、実験2では、けいれん無しの試験電界でも、走るときの下肢のけりの小さいことが観察された。

2回目以後のけいれんも含めると、実験6の最小けいれん電界において、通電開始後17分に、特にきっかけもなくけいれんが発生した。

けいれんのない場合の自発的な動作としては、走る・歩くのほかに、水をはる上を振るふり、壁に上を向けて立ち上がる、下肢で立ち上がる、足で水面をたくし、頸をひねるなどの動きが観察された。

最小けいれん電界に対応する他の電気的パラメータ（平均）は、印加電圧$V_c=9.77\text{V}$、通電電流$I_e=4.45\text{A}$、水中電流密度I_e/m^2、通電電流/通電電極間距離の比$V_e/l=5.67\text{V}/\text{m}$となった。

3.2 考察

3.2.1 実験結果と条件について

実験結果（最小けいれん電界）と条件を、実験ごとにまとめると、Table 4のようになる。これからも分かるように、実験では、けいれんのしきい値に影響をもたらう因子の内、物理的因子はほぼ固定されているが、ウサギに関する因子は一定ではない。言い換えれば、誘発対象は狭く限定されておらず、いろいろの条件によるウサギが対象となっている。

Table 4においては、一般に、各因子と実験結果との対応はばらばらで、各因子の影響は明らかではない。ただ、1日前に麻酔薬を注射した3実験ではすべてしきい電界が大きい値となっている。したがって、「1日前注射」は、しきい値を上昇させる効果が、他の因子に比べて大きい可能性もある。本実験には、このように、しきい値を増大させかため実験には無いような特殊な条件は好ましくないが、後述の、他の実験結果との比較や可随限界の推定値への影響等を点検し、多少の影響は容認して全データを採用することとした。

過去の実験では、皮膚の損傷がある外見的な体肢の伸びは起こりやすいことが認められた。また、今回のように体重の差が小さいときは、体重の影響は結果に現われないと報告が見当たらない。性別については、陸上電撃における人間の脳電流に関して女子のほうが小さいとの報告がある。使用した麻酔薬は短時間作用型であるが、けいれん作用もあることが知られている。また、運動催促によるけいれん不発生の点検は、引き伸ばし方と比べ、けいれん誘発の効果が小さいようであ
3.2.2 関連する他の実験との比較

これまで述べた実験は、水中での下肢強直を起こす電気的刺激について、Smoot and Bentelが成人男子（2人）において下肢の自由を失うときの電界の強さを測定している。

Table 5において、これらの結果及び今回の結果を比較すると、下肢の下肢強直のしきい電界（実験値）の累積頻度分布を示した。

これらの結果によれば、今回求めたしきい電界は、電極の位置、被験者の活動性、電極の材料などが影響を及ぼすことが示されている。下肢の下肢強直のしきい電界（表の下段）より小さい値（平均値は0.6倍）となっているが、これはおおよそ指標の違いによるものであろう。

すなわち、下肢強直の実験では、下肢の下肢が後方斜め下に真っ直ぐに伸び、足の指までが開くという強い伸展を下肢強直として考えたのに対し、今回実験では比較的軽い伸びまで含めてけいれんとしている。

また、下肢強直実験では通電時間は10秒で、下肢強直は通電開始直後に発生したが、これに対し、今回実験のけいれんは、通電開始後ある程度の時間がたってから、しっかりと引きずられて発生した。下肢強直の実験では、下肢はかご状の平台に固定されている。

Table 5において、人間の下肢不随のしきい電界は、上述の二つのしきい電界に加え、下側の下肢強直のしきい電界（0.6倍）である。この下肢不随は、被験者が下肢の筋の随意性を失うことであり、影響の重さから見ても、下肢で実験した下肢強直とけいれんとの間のレベルと推測される。

Table 5 Comparison of experimental data about threshold of convulsion for underwater electric shock. (Averages)

<table>
<thead>
<tr>
<th>Effect, subject</th>
<th>Field intensity (V/m)</th>
<th>Current density (A/m²)</th>
<th>Vₚ/ₙ</th>
<th>Conductivity of water (S/m)</th>
<th>Number of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolusion, rabbit</td>
<td>5.33</td>
<td>31.1</td>
<td>5.67</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Loss of muscular control, human</td>
<td>7.87</td>
<td>—</td>
<td>—</td>
<td>4.5</td>
<td>2</td>
</tr>
<tr>
<td>Stiff convulsion, rabbit</td>
<td>8.49</td>
<td>52.1</td>
<td>10.2</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>

* 1 Ratio of applied voltage to distance between current electrodes.
* 2 Data of Smoot and Bentel (2.12 and 2.88 V/foot).
が、その減少はわずかなものと推測される。
以上の比較の範囲では、今回の実験結果を人間に適用しても、危険側に大きくずれるような誤りは生じないように思われる。少なくとも事前に、ワサギに関する結果を人間に適用するにも許容されよう。

3.2.3 その他
実験中、電圧が3.8，4.3，及び8.4V/mの水中に、素手を前腕の途中または手首まで入れてみたが、いずれの場合も指や手の動きが阻害されるような現象や感覚はなかった（短時間で、水没部分が小さかったためと思われる。また、身体は絶縁されており同类への電流はない）。ただし、3.8V/mでは腕のあたため生えぎわでビビリと電撃を感じ、4.3V/mでは手の皮膚の多くの点でビビリと痛んだ。

4. けいれんの不発生限界（可避限界）

4.1 けいれんの不発生限界の推定

Table 2の実験結果を基に、ここでは、母集団全体に \[
\begin{align*}
\text{関する限界値について検討する。}
\end{align*}
\]

陸上の一例について、Dalzielは、成人男子134人に関する電流値（手を離すことのできる最大の電流）を測定した。これにより、電流値実験値の累積頻度分布は正規分布で近似できること、または良好な累積分布曲線（直線）から得られる0.5%分位点が大きいのいずれかの下限になることが示される。今回の実験結果でも、一部の結果がこれに近いが、おそらく体験の精度は、けいれんに関するものであるから、上と同様の分布に従うものと推測される。

最小けいれん電圧をその累積積度に従って正規確率紙にプロットするとFig. 4の下図のようになり、これらのデータに対し、統計的な方法で近似できる直線をえてはめる局。Fig. 4の右の図の累積頻度分布曲線（直線）が示される。これにより、最小けいれん電圧の0.5%分位点は1.94V/mである。

最大無けいれん電圧については、9回の実験の内、実験3と5の測定値がないが（Table 2のz_a, z_b）、ここでは、いくつかの点検、考察の結果、次のような手順で分布直線を求めた。

(1) 本実験では測定数が少ないこと等のため、上限しか求められないが、z_a, z_bも考慮に入れることにした。
(2) 試験電圧の間隔や次の試験で生じたけいれんの頻度を考慮しつつ、測定値に順位を付けた。数通りの順位付けとプロットが考えられるが、1例をTable 6に示す。
(3) 目測により、Table 6を含む4通りのプロットに当てはまり、最小けいれん電圧の分布直線に平行なる直線を求めて、これを最大無けいれん電圧の累積頻度分布曲線とした。

Fig. 4の左側の直線がそれで、○印はTable 6によるプロットである。これによれば、最大無けいれん電圧の0.5%分位点は1.14V/mとなる。また、同じ直線が当てはまる4通りのプロットとは、Table 6において、実験5と7、及び実験8と9の各組の中で順位が入れ替わったものである。

実験では試験電圧に間隔があるので、けいれんの真のしみ（発生限界）は、最大無けいれん電界と最小けいれん電界との間にあるものと考えられる。0.5%分位点も同様に仮定すると、その値は1.1～1.94V/mの区間にあり、期待値は区間の中点すなわち1.5V/m付近の値と推測される。

したがって、母集団に対するけいれんの不発生限界（または可避限界）は、1.1～1.9（約1～2）V/mの値と考えることができる。また、1個の値を採るとすれば、1.5V/mがよいように思われる。安全のためには最小値（またはそれ以下の値）を採るのがよいかどうか判断される。

![Fig. 4](https://example.com/fig4.png)

Fig. 4 Cumulative distributions of individual maximum non-conversing and minimum conversing field intensities.

最小けいれん電界及び最大無けいれん電界の累積頻度分布と0.5%分位点
産業安全研究所研究報告 RIIS-RR-89

Table 6 Ranking of maximum non-convulsing and minimum convulsing field intensities and cumulative relative frequencies.

Other rankings are also possible for the maximum non-convulsing intensities, but 4 probable rankings result in the same distribution curve.

測定値の順位付けとプロット位置

<table>
<thead>
<tr>
<th>Number</th>
<th>Cumulative relative frequency (%)</th>
<th>Exper. No.</th>
<th>Maximum non-convulsing (V/m)</th>
<th>Exper. No.</th>
<th>Minimum convulsing (V/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>5</td>
<td>x5</td>
<td>5</td>
<td>4.03</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>7</td>
<td>3.03</td>
<td>7</td>
<td>4.03</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>6</td>
<td>3.08</td>
<td>6</td>
<td>4.99</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>8</td>
<td>4.07</td>
<td>3</td>
<td>4.99</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>3</td>
<td>x5</td>
<td>8</td>
<td>5.19</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>9</td>
<td>5.07</td>
<td>1</td>
<td>5.54</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>1</td>
<td>5.18</td>
<td>9</td>
<td>5.97</td>
</tr>
<tr>
<td>8</td>
<td>80</td>
<td>4</td>
<td>5.28</td>
<td>4</td>
<td>5.99</td>
</tr>
<tr>
<td>9</td>
<td>90</td>
<td>2</td>
<td>6.30</td>
<td>2</td>
<td>7.27</td>
</tr>
</tbody>
</table>

*1 Cumulative relative frequency=\(i/(N+1)\), \(N=9\)

が、生理的限界としては過小評価となるおそれもある。
例えば、大きいほうの測定値に麻酔薬の影響があっ
て、影響がないときの値は少し小さいとすると、
0.5％分位点は増大する結果となる。例えば、実験2の
最小けいれん電界を1段階下げて6.30V/mとする
と、そのときの0.5％分位点は2.5V/mとなる。
また、仮に実験3と5を無視すると、最大けいれ
ん電界的分布曲線は少し右下に移動する結果となる。

4.2 不発生限界に関する考察

本実験では、生体の断面積に比し、かなり大きい断
面積（およそ10倍以上）をもつ水のパイパスがあった。
条件が異なれば、けいれんの不発生限界が変化するこ
とが考えられる。

Smootたちは、身体の中間部、すなわち髄のわき
の下から下へ11〜35インチ（0.28〜0.89m）の区間
に水のパイパスがない場合について通電実験を行な
い、陸上の安全電流5mAに対応する安全限界として
電界0.2V/foot（0.656V/m）を採用した。ただ
し、この電界は、人体の平均電界、すなわち上下極
の電位差を髄に当たらない部分の長さで割った値
である。なお、5mAは陸上における女子の（手の）離
脱限界6mAより少し小さい。

ウサギに下肢神経を授與した、生体の平均電
界と水中の電界とは、水の導電率が本実験と同じで、
髄体と電界の方向とが平行の場合、ほぼ等しい値と
なった。この場合、生体も体表の検出電極も水中に
あるので、得られた平均電界と生体内の電界との対
応は多少あいまいである。しかし、一応これに従っ
て、本実験で生体の平均電界は水中電界にいたい
等しいと仮定すると、例えば1.5V/mはSmootたち
の安全限界の2.29倍となる。

直流と電界と、Smootたちが示すように対応があ
るとすると、人体の平均電界が1.1V/mのときに人
体に流れる電流は約8.4mAとなるが、これは、陸上
の電撃の成人男子の手の離脱限界（9mA）より少
い。また、1.5V/mに対応する電流は11mAとなる
が、これは陸上で男子が手を放せない頻度の3〜4％
に対応している。

前述の実験においては、塩水・平行の場合に、水
中電界及び生体の平均電界のしきい値は最小になった。
本実験もこれと同じ条件と考えてよい。なお、8S/mの導電率は、実海域の水において、大きめの
値と考えられる。

直流の不発生限界は、陸上の離脱限界と同じく商用
交流の4.6倍であると仮定すると、5.1〜8.7V/mと
なる。電気設備技術基準（第248条）では、電気防じ
く設備による、地表または水中の距離1mの任意の2
点の電位差は、隔離の周期等を除き、5V以下と規定
されているが、この値は上の推定値以下なのであ

いる。

今回の実験では、仮に2.5 V/mに暴露してもけいれんは生じなかったと考えることができる。また、2.5 V/mに対する100分間暴露の実験で、今回と同様にウサギを拘束しない方法で21回、台に固定する方法で7回の試験を行なったが、この内、後者の1試験において、上肢の後方・斜め下への伸直が数回観察された（これは例外的で、通常は下肢の伸直がまず観察される）。ウサギ胸部に傷あり。すべて自力回復。

したがって、2.5 V/mに対する20分以上の暴露試験は延べ36回（連日実験した今回の実験5を除く）であり、各試験は独立とすると、2.5 V/mにおけるけいれん発生の累積頻度は1/36（＝2.8％）となる。この点はFig.4の二つの分布直線の中心付近に位置している。なお、異なるウサギの数は全部で14匹である。

5. むすび

水中の均一な電界にウサギを暴露する実験を行ない、けいれんの起こる電界を測定した。また、実験で得られた最小けいれん電界及び最大けいれん電界の累積頻度分布を求め、けいれんの不発生限界を推定した。

実験には、導電率が約6 S/mの塩水（濃度3.5％、温度30℃）を使用した。水深はウサギが水槽の底に足を着いて歩き回れる程度、また試験電界は交流50Hz（正弦波）で、1試験の暴露時間は20分である。

結果は要約すると次のようになる。

(1) 最小けいれん電界は、9回の実験で、平均5.33V/m、分散4.03～7.27V/mの値となった。このときのけいれんの程度は一定ではなく、比較的小いものから重篤なものまで含まれている。

(2) 最大けいれん電界は、平均4.50V/m（ただし累積頻度分布の50％分位点、分散3.03～6.30V/mの値となった。

(3) 上記2種の実験の累積頻度を正規確率紙にプロットして直線を当てはめた。これによれば、最大けいれん電界及び最小けいれん電界の0.5％分位点は、それぞれ約1.1及び1.8V/mとなった。母集団に対するけいれんの不発生限界、または可隨限界（随意運動の可能な限界）は、1.1～1.9V/m（水中の電界）と推測される。

実験条件より水の導電率が小さい場合や、正弦波で周波数の異なる場合、低い水中電界は本実験と同程度以上の大きさである。