密閉容器中における粉じん爆発に及ぼす乱れの効果

松 田 東 榮*

Influence of Turbulence on Dust Explosion in a Closed Vessel

by T. Matsuda*

Abstract: In recent years there has been a tendency to use new kinds of combustible dusts as materials in higher advancement of technology, without full investigation of their explosion hazard properties. Testing of dust explosibility is needed for safety in processing plants of combustible dusts. Turbulent flow motion is often inherent in a dust-air mixture in closed explosion testing bombs. The explosion data are influenced with turbulence intensity.

Experiments have been carried out to assess the influence of turbulence on the explosion pressures and maximum rate of pressure rises in a 419-l closed near-spherical vessel. Dust was dispersed through two perforated semi-circular tubes with air blast. The tubes were connected to dust chamber then via a solenoid valve to an 888-l compressed air reservoir charged to 10 bar. Cornstarch and two other chemical dusts were used as the fuels. Ignition source was a chemical ignitor whose energy was easimated to be about 5kJ. After placing the dust in the chamber, the outlet tube of the dust chamber was sealed with a 0.05mm Al-foil and then the vessel was evacuated to the pressure corresponding to the air discharge time. The air discharge brings the pressure back to the 0-bar(gauge) in the explosion vessel.

The variables in forming dust clouds and ignition are the air discharge time for dust dispersion and the delay time to ignition from closing the discharge valve. The time delay between discharge and ignition controls the turbulence level at the time of ignition. Figs. 3 and 4 show the optical transition traces with pressure-time curves, illustrating a relatively good uniformity after a short dispersion pulse. Fig. 5 shows the variation of the maximum rate of pressure rise with the time delay between discharge and ignition for cornstarch-air mixtures. The influence of turbulence intensity is found in that the maximum rate of pressure rise decreases sharply with rapid decay of dispersion turbulence. However, the decay of the explosion pressure with increasing time delay is much slower for the dust concentrations between 500~600 g/m³ (Fig. 6), indicating good distribution of the dust for the shorter time delay.

To assess the relative hazards of a dust-air mixture, Kₚ value has been accepted in various countries. The Kₚ value is the maximum rate of pressure rise scaled with test volume. The standard method to determine Kₚ values in a 1-m³ has been established in ISO-6184[3]. To have the same Kₚ values as those with the ISO, a time delay of 70ms is needed in our vessel with the ignitor currently used. Further experiments with some other dusts were continued to match the results for the standard, on search of turbulence level of the mixtures. The present data are compared in Table 2 with those reported by others, showing a fairly good agreement of the Kₚ between them irrespective of their different detailed structures of turbulence.

* 化学研究所 Chemical Safety Research Division
These data for the cornstarch dust from the present experiments are also compared with those of others (Figs. 9 and 10), although the particle properties of the each cornstarch would be greatly different. The present data for the explosion pressures show quite good agreement with those of Bond et al. in 333-l sphere vessel, but the K_a value is the highest for the present data among the values from different investigators. The comparison suggests that the K_a value does reflect turbulence level of the mixture even in transient flow when the dust is in full dispersion. Although it will be possible to produce reproducible K_a values for a given dust in different methods, it is not clear whether the turbulence level in determining the K_a value of the mixture is pertinent to evaluate the explosion hazard of combustible dusts for industry.

Keywords: Dust explosion, Turbulence, Explosion pressure, K_a value, Cornstarch

1. まとめ

粉じん爆発の危険性は、可燃性粉じんを扱う数多くの工程に存在し、条件次第では、ガス爆発同様またはそれ以上の災害を引き起こすことがある。しかも、科学技術の進歩の早い今日では、粉体工学の発展に伴って素材料としての粉じんの利用が急激な増加をしており、産業工程におけるその爆発・火災の潜在的危険性は次第に大きくなる傾向にある。

このような粉じんの爆発・火災の潜在危険性を知る上で、粉じん物質の発生危険性を評価することは重要で、安全対策上基本的なことである。粉じんの発生危険性を評価するためには、粉じん雲を形成して爆発特性値を測定する方法が最も信頼できる手法の一つと思われる。ところが、粉じんでは可燃性ガス・空気混合気のような均一な爆発性混合気を形成することが普通で、浮遊粉じんとして空気中に存在する不均一な固・気混合気が測定の対象となる。しかし、粉じんの有効な分散を達成する上で空気圧の利用は避け難く、それに伴う粉じん雲の乱れは、これまた必然的なものと考えられる。特に、装備施設粉じんに対してはこのような方法は有効である。かくして、粉じん物質固有の危険性を評価することを目的としても、密閉容積中における爆発特性の測定においては混合気の乱れを分離して実施することは通常困難である。

乱れは可燃性混合気の爆発特性に大きな影響を与えることは、一般的に知られているが、粉じん爆発危険特性値との詳細な関係はまだ十分研究されていない。なお、この場合の乱れは、前述のように爆発容器内で粉じんの分散用空気圧によって引き起こされる粉じん雲の乱れからである。それ故、分散の形態によってもまちまちな乱れが形成される可能性があり、乱れはそれぞれの測定容器に固有な値とも考えられる。すなわち、爆発特性値は分散方法および測定容器の寸法、形状に依存するであろう。しかしながら、これまでにいくつかの試行ができが、実用上、一定の標準容器および方法を定め、それによって測定された各種粉じんの爆発特性値を比較すれば、それらの相対的な危険性を評価できると思われる。通常、このような爆発容器は球形もしくはそれに近い形状の容器で、爆発特性値として混合気の燃焼エネルギーよ関連する最大爆発圧力及び燃焼速度に関連する最大圧力上昇速度が、多くの研究者によって測定されてきたところである。その中で、Bartknechtの粉じん爆発危険性を示す粉じんの分類を、最大圧力上昇速度に関係する K_a 値によって行い、それらの測定方法は ISO（国際標準化機構）規格に採用されている。しかし、乱れの影響については装置特有のものとして記述しており、その程度は不明である。ここで、爆発測定容器の容積を V、最大圧力上昇速度を $(dp/dt)_{\text{max}}$ とすると、

$$K_a = (dp/dt)_{\text{max}} \cdot V^{1/2}$$

の関係があり、K_a は容器に関して規格化された最大圧力上昇速度を表す。また最大圧力上昇速度は燃焼速度に関係するので、K_a は爆発の激しさを表す爆発特性値として重要な役割を果たしている。一方、粉じん爆発に及ぼす乱れの効果に関する研究には、Leeらのグループが、Kaufmanらが対して近年精力的に行われた数々の実験的研究があるが、乱れの強さはどれも著しく小さく、ISOに準じた爆発特性値を求める上で乱れの効果を判断するためには不十分であると思われる。

ここでは、可燃性粉じんの爆発特性値を測定する上
密閉容器における粉じん爆発に及ぼす乱れの効果

で出来るだけ爆発火炎の伝ばが容器壁の影響を受けないように大型密閉容器における、爆発圧力および最大圧力上昇速度の二つの爆発特性値に及ぼす大きな乱れの効果について検討した。

2. 実験

実験で使用した爆発測定装置の概要を、Fig. 1 に示す。爆発容器は直径800mmの球形容器を二分し、その間に直径300mmの円筒管を挟み込んだようなキャプセル形状の鉄製耐圧容器で、内容積は419-ℓある。直径4mmの小穴を開けた分散パイプ（内径19mm）を通して、試料粉じんを圧空気で容器中に分散させる方法で浮遊粉じん雲を形成させた。分散系は左右対称二系統あり、これらを内容量888ℓの圧縮空気タンクに接続した。試料粉じんは二個の粉じん容器に二分して充満し、粉じん容器と空気タンクとの間の空気圧作動形バルブ（口径32mm、外部パイロット電磁弁付）および逆止弁を開くことによって分散した。また、粉じん容器と分散パイプとの間には、アルミ箔を挿入し、爆発容器を減圧する場合の粉じんの移动阻止と容器の気密性を確保した。アルミ箔（0.05mm厚）は加圧空気によって容易に破壊するものを選んだ。

分散パイプの小穴の個数は一系統につき10個で、容器中心向きに配列した。分散パイプの使用はBartknechtのようが、彼らが1m²容器において空気加圧粉じん容器（2ℓ、20bar）の弁解放によって粉じん分散を達成したのに対して、ここでは大容積の圧縮空気タンクを利用してできるだけ大きな乱れを爆発容器内に形成できるように、装置仕様を設定した。

着火エネルギーが爆発に及ぼす影響はすでに報告されているので、ここではそれを参考にして、Al、Mg、Ba(NO₃)₂、BaO₂の混合物をポリエチレン・ラップで包んだを、点火室で起爆させる方法で着火した。その量（1g）は一定とし、起爆位置は爆発容器中心とした。着火エネルギーは計算上約5000Jに相当する。

また、着火シーケイク空気バルブを起動させる電磁弁と電気的に接続して、リレーおよびタイマーの利用によってバルブの開放時間並びにバルブを閉じてから起爆までの時間をそれぞれ10ms 単位で制御できるようにした。

爆発圧力の時間変動を示す圧力曲線は、爆発容器中心部の側壁とFig. 1 に示す位置の二箇所に圧力変換器を取り付けで測定した。また、粉じんの分散状況を観測するため、先端にガラス絨を付した内径7m-

Fig. 1 Dust explosion experimental vessel.
粉じん爆発実験容器（419 ℓ）
mの細管中にフォトダイオードまたは豆崩を収納し互いに約16cmの間隔でそれぞれを対向させ一種の光透過型粉じん濃度計として、容器中心部に設置した。これら出力信号は、いずれもデジタル・オシロスコープに記録して観察した。なお、フォトダイオードで測定した着火源の燃焼時間は比較的長く約70msであったが、着火源単独での起爆によって生ずる圧力を検出されなかった。この着火源の燃焼時間は、金属粉の燃焼によるものであるが、これらの放射熱が試料粉じんの爆発反応に及ぼす影響は、粉じん量に較べれば金属量がはあるかに少ないで無視できるものと思われる。

Fig. 2 Particle size distribution of the dusts.

Table 1 Properties of the dusts.

<table>
<thead>
<tr>
<th>Dust</th>
<th>Mean diameter, μm</th>
<th>Specific surface area, cm²/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cornstarch</td>
<td>26</td>
<td>4,083</td>
</tr>
<tr>
<td>2. BTA (Timvin320)</td>
<td>16</td>
<td>7,356</td>
</tr>
<tr>
<td>3. PTP (Irganox1010)</td>
<td>33</td>
<td>6,492</td>
</tr>
</tbody>
</table>

* Trade name
 dₐ = volume mean diameter
dₘ = mass mean diameter
dₛ = surface-area mean diameter

爆発実験には、データの比較が行えるように爆発特性値が多数報告されているコーン・スタータピロジンを主に使用した。同粉じんは調理用として市販されてい る25kg袋入（日本コーン・スタータピロジン株）のものを使使用量で約65℃、20時間乾燥してそのまま使用した。他に、やはり比較のためにブラスチック添付で業者流通している、2 - (3, 5-ジ-テトラーチル-2-ヒドロキシフェニル) ベンゾトリアゾール（商品名Timvin320 [日本チバガイア株]、以下、本稿ではBTAと略称）及びペンタエリチルテトラクロス [3 - (3, 5-ジ-テトラーチル-4-ヒドロキシフェニル) プロピオ

3. 実験結果および考察

Fig. 3, 4は、コーン・スタータピロジン粉じん爆発実験で得られた光透過率、圧力及び圧力上昇速度の時間変化をそれぞれ示す。Fig. 3は粉じん濃度300g/m³の場合で、光透過率は最初の部分で10%から急激に減少するが、すぐに約90%のレベルに回復して着火起爆までにほぼ一定に保たれるすることを示している。これは、空気放出口時間400ms（減圧度は540mmHg）に較べ、粉じんの分散が極く短時間で終了することを示している。一方、同じ空気放出口時間で粉じん濃度600g/m³の場合の光透過率の変化（Fig. 4 (a)）は、当初激しい変動があるものの平均レベルはあまり変わっていない。この場合、粉じん濃度計の検出限界に近い。粉じん濃度計は容器中央の限られた直線方向の濃度変化しか示さず、容器全体の分布は概ね知れないが、これらの光透過率の変化及びその変動期間から見て、粉じんの分散
密閉容器中における粉じん爆発に及ぼす乱れの効果

は、加圧空気によって一気に充填試料粉全量が押し出され、爆発容器内で乱流混合して粉じん空気・混合気を形成する。それ故、加圧空気の放出停止とともに、乱れのレベルは急激に減衰することが期待され、それに伴い粉じん粒子の沈降が生じるとと思われる。しかし、600g/m³のコーン・スターチ濃度においても光透過率で見る限り、分散後1.0秒間位であれば粉じんの沈降は少ないようである。これは、取りも直さず混合気の初期の乱れレベルが高いかからである。なお、着火に伴い光透過率は再び100%を示したままとなるが、これは着火源と粉じん火炎による発光のためである。

ここでの示した圧力曲線は比較的スムーズである、それは容器形状によるとと思われる。なお、圧力上昇速度の最大値、すなわち最大圧力上昇速度は局所的に変動する数値ではない、Fig. 3, 4-(c)のような微分曲線のマクロ的視点から見た最大値として求めた。また、着火は1 bar、abs. (100kPa)を基準として起爆させ圧力を測定したが、爆発圧力は変圧で示している（ΔP）。

Fig. 3 Cornstarch dust dispersion and ignition for concentration of 300 g/m³ with dispersion time of 400 ms. (a) Optical dust probe trace at centre of the bombs. (b) Pressure trace for delay time of 600 ms. (c) Rate of pressure rise trace.

濃度300g/m³、空気放出時間400msにおけるコーン・スターチ粉じんの、(a) 容器中心濃度変化、(b) 爆発圧力変化（着火遅れ時間600ms）、(c) 压力上昇速度変化

Fig. 4 Cornstarch dust dispersion and ignition for concentration of 600g/m³ with dispersion time of 400 ms. (a) Optical dust probe trace at centre of the bombs. (b) Pressure trace for delay time of 1120 ms. (c) Rate of pressure rise trace.

濃度600g/m³、空気放出時間400msにおけるコーン・スターチ粉じんの、(a) 容器中心濃度変化、(b) 爆発圧力変化（着火遅れ時間1120ms）、(c) 压力上昇速度変化
一定の粉じん・空気混合気に対して、この実験での爆発圧力および圧力上昇速度に影響する項目として、圧縮空気タンクの圧力、空気の放出時間、着火遅れ時間の変数がある。この実験において、分散による初期の乱れの強さは空気タンクの圧力に依存し、着火遅れ時間は着火時の乱れの強さのレベルを決定する。分散パイプの噴出小穴付近で生成される初期の乱れの強さは、空気放出時間の間だけ維持されるが、その乱れの強さは（空間）距離的にも時間的にも急激に減少するだろう。出来るだけ大きな乱れを形成させるため、ここではタンク圧力を最大の一定圧力（10bar）に圧縮して放出することにして、他の影響因子の効果を調べた。

![Fig. 6 Data for the variation of explosion pressure with time delay to ignition at different cornstarch concentrations (Dispersion time: 250 ms)](image)

一定の粉じん・空気混合気に対して、この実験での爆発圧力および圧力上昇速度に影響する項目として、圧縮空気タンクの圧力、空気の放出時間、着火遅れ時間の変数がある。この実験において、分散による初期の乱れの強さは空気タンクの圧力に依存し、着火遅れ時間は着火時の乱れの強さのレベルを決定する。分散パイプの噴出小穴付近で生成される初期の乱れの強さは、空気放出時間の間だけ維持されるが、その乱れの強さは（空間）距離的にも時間的にも急激に減少するだろう。出来るだけ大きな乱れを形成させるため、ここではタンク圧力を最大の一定圧力（10bar）に圧縮して放出することにして、他の影響因子の効果を調べた。

Fig. 5, 6 は、コーン・スターチの種々の粉じん濃度における最大圧力上昇速度と（最大）爆発圧力着火遅れ時間に対してプロットしたものである。ただし、着火遅れ時間は空気放出停止後着火遅れまでの時間に相当するが、実際にはこれよりも150msだけ短い。記録された圧力曲線から、この時間より短い遅延時間での着火は少なくなっているから、この損失時間は空気パイプから噴出した空気流れが爆発容器に達するまで遅れ時間とみなされる。両図は空気放出時間を250msの一定にした場合の変化を示すが、最大圧力上昇速度着火遅れ時間の経過と共に急激な低下を示す。Fig. 5 において、粉じん濃度が500～700g/m³の範囲で着火遅れ時間0と400msの場合を比較すれば、時間の経過に伴って最大圧力上昇速度は約1/8～1/10も低下する。これらは、乱れの強さが粉じんの分散後急激に減少することに対応していると考えられる。ここで、濃度600g/m³の場合が最大圧力上昇速度は最も大きい値を示し、これらの粉じん濃度の範囲では着火遅れ時間に対する減少傾向はほとんど同じである。これに対して、粉じん濃度300g/m³の場合は、減少傾向はより顕著であり、同様の粉じん濃度による差異は爆発圧力と着火遅れ時間の関係（Fig. 6）においても見られる。
着火遅れ時間による爆発圧力の低下は、最大圧力上昇速度のそれよりもかなり小さい。Fig. 6において、100ms以下の短い送電時間では粉じん濃度500～700 g/m³における爆発圧力はあまり変わらず、600msまでの遅延時間に対する爆発圧力の全体的な減少割合は比較的小さい。これに対して、データ点は150ms以下に限られるが、300g/m³の濃度における減少傾向はより顕著である。そこで、一般に、爆発圧力は混合気の持つエネルギーのみに依存するが、実際には容器壁への熱損失、次に爆発後続時間によって影響される。それ故、爆発圧力は当然粉じん濃度に影響されるが、粉じん爆発では通常未燃焼粒子が残存するので、同じ濃度でも実際に燃焼した粉じん量に依存することになる。これらのことを考えると、500～700g/m³のコーン・スターチ粉じん濃度では、着火遅れ時間が短い場合（<100ms）、粉じん層が十分行われる粒子の強い条件で混合気の燃焼が進行し、混合気の持つエネルギーや持つエネルギーが十分放出されたと考えられる。着火遅れ時間がより長くなった場合の爆発圧力の緩やかな低下は、粒子間の距離がときりりに伴う粉じん濃度の不均一性によってものと思われる。一方、濃度300g/m³の場合粉じんの分散はほぼ完全に行われ、上述の場合よりも粒子濃度が少ないだけ、混合気の乱れの強さが大きいだろうと予想される。従って、乱れレベルの減少割合もより急速となるだろう。空気流中での粉じんの存在は、乱れ強度を抑制する働きを有していると考えられる。ただし、乱れのスケールは分散パイトの小穴径で決まり、その程度に変化はないと思われる。他に、この濃度における、やや急速で最大圧力上昇速度および爆発圧力の減少傾向は、比較的長い爆発後続時間、すなわち着火から燃焼終了までの時間がより長いため、放射および乱れ対流による器壁での熱損失がより大きくなることによるものと思われる。しかし、その減少傾向からみてそれだけでは不十分で、乱れに基づく粉じん濃度の変動や乱れと粒子の複雑な作用によるものと考えられる。

Fig. 7は、コーン・スターチ粉じんの同一濃度における空気放送時間を影響を示す。300g/m³の場合、着火遅れ時間が短ければ、最大圧力上昇速度は図に示した範囲での空気放送時間による影響を受けないが、着火遅れ時間が長ければ空気放送時間が長いほど最大圧力上昇速度の低下はより著しい。乱れの初期強さはタンク圧力が一定なので同等であるが、空気放送時間が長いほど乱れの高いレベルがより長く維持されることがよりあるのである。爆発圧力は空気放送時間の差によってほとんど変わらず、着火遅れ時間と共に多少減少した。粉じん濃度600g/m³の場合は、着火遅れ時間による最大圧力上昇速度の減少傾向は、ここでの空気放送時間による差はなく、爆発圧力は空気放送時間が長いくより低い値を示すようである。300g/m³の場合やも言えることであるが、空気放送時間が長いと、粉じんはそれだけ長く爆発容器内で流動することになり、揚げ物中に器壁への粉じんの付着や粒子の凝集が起きることによるものかもしれない。図から、最大圧力上昇速度や爆発圧力の最大値を求める上で、ここで設定した範囲内であれば、空気放送時間の影響は小さいと思われる。
Fig. 8 は、BTAおよびPTPの粉じん濃度600g/m³の空気放出時間250msにおける着火遅れ時間と爆発圧力の関係を示している。BTA粉じんの一部の爆発圧力データを除いて、全体的にデータのバラツキは少ない。なお、これらの粉じんの分散特性によるものであろう。BTA粉じんの方が大きい最大圧力上昇速度を取り、100ms以下の遅れ時間で急激な立ち上がりを示すが、両者の爆発圧力に差はなく、遅れ時間約300msまでならばほぼ一定である。

以上の結果からも明らかのように、粉じんの爆発特性のなかで、とりわけ最大圧力上昇速度（Kₚ）は遅れレベルによって大きく異なる値を示す。そこで次に、粉じん爆発の最大圧力上昇速度としてどのような値を採用すべきかということが問題になる。それは、目的にもよるが、ISO規格データとの比較を行うこととすると、上記のデータから、着火遅れ時間として約70msを取ればISO-6184_4に準じた特性値が得られるようである。Table. 2に、この場合の測定値と文献値を比較した。ただし、同名の粉じんでも粒度分布を初めとした物質特性が異なるので、単純な比較は出来ないが、当測定装置におけるKₚの測定にこの遅れ時間に相当する遅れ特性を与えてやれば良いだろうと判断される。なお、上記のISO規格では、規格で定めている1m³爆発容器の代替容器を使用する場合、Kₚの値であるいくつかの粉じん試料を用いて文献値と差がでないことを検証することを要求している。実際、同一粉じん試料を入手することは前記の理由で困難である。ここでは、上記のBTAおよびPTP系の粉じん試料を別に5種入手し、ここで定めた測定方法によってKₚ値を測定したところ、既存データとはほぼ一致する値が得られた（これらについては、別に報告予定）。これらの結果からも、粉じん・空気混合気の混合が等の遅れレベルであれば、遅れの詳細な構造の相違を問わず、ISO規格におけるKₚ値の測定が可能であると思われる。

Table 2 Comparison of present results with reference data.

<table>
<thead>
<tr>
<th>dust</th>
<th>reference</th>
<th>∆Pmax (bar)</th>
<th>Kₚ (bar·s/cm³)</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>cornstarch</td>
<td>present</td>
<td>7.8</td>
<td>200</td>
<td>V = 1 m³,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.3</td>
<td>200</td>
<td>d = 7 μm,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V = 1 m³,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d < 10 μm</td>
</tr>
<tr>
<td>BTA (Tinaxin-320)</td>
<td>present</td>
<td>7.7</td>
<td>261</td>
<td>V = 1 m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.6</td>
<td>265</td>
<td>V = 1 m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.7</td>
<td>292</td>
<td>V = 1 m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.1</td>
<td>283</td>
<td>V = 0.22 m³</td>
</tr>
<tr>
<td>PTP (Irganox-1010)</td>
<td>present</td>
<td>7.2</td>
<td>165</td>
<td>V = 1 m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.3</td>
<td>144</td>
<td>V = 0.22 m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.7</td>
<td>160</td>
<td>V = 0.22 m³</td>
</tr>
</tbody>
</table>

* Trade name V: Explosion vessel volume, d=particle mean diameter

また、爆発容器中のある点における着火直前の平均流速を測定したとしても、火炎の膨張による未燃焼混合気の圧縮および遅れによって火炎直前の流速は著しく変動するので、その流速値では遅れの遅れ特性を十分表現できないと思われるので、個々の爆発測定容器ごとの上記のような検証が必要になるだろう。
しかし、このような一過性の乱れ持続のためで測定された爆発特性値は、粉じん物質固有の基本的な危険特性値とは言えない。特定の流動条件下での相対値でしかすぎないだろう。それ故、燃焼速度のようより基本的な特性値を測定する必要があるが、密閉容器中での燃焼速度を直接測定することはいまのところ困難であり、より精密な間接的手法の開発がなされなければならないだろう。また、粉じんの爆発危険性評価に実験で K_a 測定値を利用するにしても、プラントにおける粉じんの実際の乱れレベルの程度を考慮しなければ、妥当な評価はなし得ない危険性をもたらす。ところで、コーン・スターチ粉じんの爆発データは、これまでに報告されている。その中で球形爆発容器を使用したデータを選んで、Fig. 9、10に当実験データと比較して示した。もちろん、粒度分布を含む粉じんの特性や分散方法、従って乱れ特性などもかなり異なるであろうが、定性的な傾向は比較できるだろう。図によると、爆発圧力と粉じん濃度の関係は、ここで得られたデータとBondからのそれとは高濃度の場合以外驚くほど良く一致する。これらの粉じんの分散はかなり良い条件にあったと推定される。Kauffmanらのデータでは二つの乱れ強度に対する変化傾向は同じであるが、乱れレベルが高いほうがより大きい爆発圧力を示している。Cocksらは20L容器を使用して測定したが、平均粒径が大きかったためか最大爆発圧力を示す粉じん濃度は高いために、指示値にても、濃度約100 g/m³から爆発圧力は急激に高くなり約600 g/m³の濃度で一定値に近づき、それ以後わずかに低下する傾向がある。一方、最大圧力上昇速度をK_aで比較すると、乱れレベルの違いによって大きな相違がある。当実験データのK_a最大値はKauffmanらの示す乱れ強度$u'=4$m/sの場合の約4倍で、他のいずれの値よりもかなり大きい。乱れのスケールはいずれの実験でもそれぞれと変わらないので、ISO規則に準じて測定した当実験データは乱れ強度がかなり高い条件で測定されたことが分かれる。Fig. 11は、同じ条件におけるBTAおよびPTP粉じんの粉じん濃度と爆発圧力及び最大圧力上昇速度の関連データを示す。BTA粉じんについてはBartknechtのデータもプロットした。最大爆発圧力を示す濃度が、最大圧力上昇速度の最大

Fig. 9 Comparison of results for the explosion pressure in cornstarch-air mixtures as a function of concentration.

コーンスターチ粉じんの粉じん濃度と爆発圧力の関係の他のデータとの比較

Fig. 10 Comparison of results for K_a value in cornstarch-air mixtures as a function of concentration.

コーンスターチ粉じんの粉じん濃度とK_a値の関係の他のデータとの比較
Fig. 11 EXPLOSION PRESSURE AND MAXIMUM RATE OF PRESSURE RISE VS. DUST CONCENTRATION FOR BTA AND PTP DUSTS.

BTA および PTP 粉じんの濃度と爆発圧力および最大圧力上昇速度の関係

点を最大として乱れの強さはその後急激に減少する特性のものである。これに対応して、最大圧力上昇速度も急激に低下するが、最大爆発圧力はあまり変化しない。簡単に言えば、爆発圧力が混合気の持つエネルギーを表すのに対し、最大圧力上昇速度はエネルギーの放出速度すなわち燃焼速度に関連づけられるからである。混合気中の粉末の分散が完全で粉じんが完全燃焼するものであれば、混合気の放出エネルギーは乱れに関係なく一定となるだろうが、実際には種々の要因が関連して爆発圧力はかなりのバラツキを示す。通常、乱れの増大によって火炎面積が著しく拡大する結果結果燃焼速度も増大し、それに関連する最大圧力上昇速度もまた大きくなくなる。これらの特性を反映して、ここで示された最大圧力上昇速度は著しく高く、ISO 規格に準じた K_a を測定するためには約70msの着火遅れ時間をとればよいことがわかった。しかし、K_a 値は乱れレペルに依存してなお大きく変動するので、その適用においては乱れレペルを考慮しなければ爆発危険性を過小評価する危険性も否定できない。

一方、最大圧力上昇速度と燃焼速度の関係は、C を定数、S を燃焼速度、P_0 を初圧、τ を燃焼速度として、

$$K_a = \frac{V^{1/3} \Delta p}{\Delta t} = C S A P_{\text{max}} (P_{\text{max}}/P_0)^{1/\tau}$$

によって近似的に与えられる。この式から燃焼速度がある混合気の化学的性質のみを表すものとすれば、K_a は決定するが、実際には乱れ燃焼速度は乱れレペルに大きく依存するため、K_a は一定にはならない。しかも、粉末の分散状態や容器底への熱損失などに依存して、最大爆発圧力も乱れの程度に応じて燃焼速度に多少なりとも依存するので、K_a はさらに大きくなることがある。それにも拘らず、K_a 値を粉末燃焼特性値として測定する理由は、乱れレペルを一定にすれば爆発容器容積に関係なくほぼ一定の特性値が決定でき、相対比較が可能になることがあるが、それを参照する場合は乱れレペルによって大きく影響される値であることを再度考慮する必要がある。

(平成元年 3 月 31 日 受理)

参考文献

1) W. Bartknecht. 'Explosionen', Springer-Verlag, 1978, Berlin

2) ISO 6184/1-1985 (E). Explosion protection system—Part 1: Determination of explosion indices of combustible dusts in air, International Organiz-

7) BIA: Brenn-und Exposionskenngrössen von Stauben, Forschungsbericht Staubexplosionen des Berufsgenossenschaftlichen Institutes für Arbeits sicherheit, März 1980

8) W. Bartknecht, Swiss Chem., 3 (Nr. 3a), 51 (1981)

9) 日本ツバガイギー調査資料

