UDC 621.868.27:621.882.6:531.781

トラッククレーンの旋回サークル部のボルトの応力について*

前田豊**

On the Stress of Bolts of the Slewing Circle of a Truck Crane

by Yutaka MAEDA**

The slewing circle is a rotating mechanism to make a crane slew. Most of slewing circles are made of large-sized ball bearings, and they are installed by several pieces of bolts onto revolving super structures and also onto base carriers.

The purpose of this study is to clarify the stress distribution of each of the bolts in a slewing circle experimentally. The date will be of use to establish the method to calculate the stress about them.

For this, measurements of the stresses of the bolts of a truck crane of 11 tonf (108 kN) capacity were carried out, and the stress values obtained from the experiment were applied to a model that each of them was divided into such six stress elements as i) initial tightening stress, ii) stress by thrust (vertical) load, iii) stress by a component of moment that would act to overturn the crane to right- or left-side, iv) stress by a component of moment that would act to overturn the crane to forward or backward, v) stress by both of the magnitude of the thrust load and relative position of the bolt to revolving super structure, and vi) stress by both of the magnitude of the moment and relative position.

Measurements were made for the amount of 228 cases, with a combination of varieties of weight, slewing angle, and slewing radius. Measured data were calculated with a digital computer by the least square method, to get factors to explain the stress distribution.

The conclusions in this report are: i) stress concentration was recognized to some specific bolts which were near the web member in the base carrier, and ii) revolving super structure's position has some influence to the stresses of bolts on the base carrier. From these, it was assumed that the surface of the slewing circles is not kept up a flat plane while forces act on a system by bolts and slewing circle.

Keywords: Truck crane, Slewing, Bolt, Stress, Experimental equation, Least square method

1.緒 言

旋回サークルとは、クレーンの上部旋回体と下部走行 体の間にある回転機構のことである。トラッククレーン には、これに大きなころがり軸受を用い、その外輪と内 輪をそれぞれ上部旋回体あるいは下部走行体にボルトで 取りつける構造のものが多い。

近年,このうち主として下部走行体側との取りつけに 用いられるボルトの破断,あるいはそれによる倒壊事故 が増えているが^{1),2),3)},その再発防止対策を講じる上で も,ボルトの応力の値を正しく把握することは必要なこ とである。

しかし,現在の設計式^{4),5),6)}では,旋回サークル・ボル ト系をねじ締結体として考慮していないため,初期締付 け力が大きいこのボルトの応力を計算することはできな い。また,これらの設計式では,旋回サークルのボルト 取り付け面が荷重負荷後も平面を保つという仮定をいず れも暗黙裏に認めており,このため,ボルトの応力は Fig. 1に示すように旋回サークル面内の中立軸からの距離に 比例した分布をとるものと仮定されている。

ところが、応力の計測例⁷では、定性的にではあるが、 機体の剛性により特定の部分に応力の集中があることを 示しており、上記の仮定が成立しない可能性がある。

そこで、本研究では、実機のトラッククレーンについ て、このボルトの応力分布の状況を把握するため、応力

Fig. 1 A model of stress distribution used for design calculations 設計計算に用いられる応力分布のモデル

の測定を行うこととし、結果の整理に当たっては、機体 の剛性により応力集中の程度が影響を受けることが予想 されるため、それぞれのボルトが上部旋回体に対してど のような位置に相当するか、また下部走行体のどの部分 に取りつけられているか、その両方の影響を同時に考慮 できる方式を考えることとした。

また、クレーンは、つり荷の重量、作業半径、旋回角 度等を種々に変えるため、それにより旋回サークル・ボ ルト系に加わる力の大きさ、モーメント及びその方向も 種々の値をとる。このため、力(旋回サークル・ボルト 系に外から加えられる力の和)を基本的な成分に分解し、 ボルトの応力をそれぞれの成分による応力の総和として 表わすというモデルを考えることにした。なお、上部旋 回体の自重は無視できぬ大きさであり、これを除いた状 態でボルトを締めつけることは不可能であるが、以下に おいて初期締めつけ力(又は応力)と言う場合は、自重 を除いた場合に相当する仮想的な初期締めつけ力(又は 応力)を意味することとする。

2. 実験データの解析方法

2.1.記号の意味

- $i: ボルトの番号 (1 \leq i \leq l)$
- j:計測条件の番号(1≤j≤m).荷重の大きさ,作業
 半径,旋回角度の組み合わせにより一連の番号を付
 番したもの。
- k:着目しているボルトが、上部旋回体に対してとっている位置につけた番号。とり得る位置は無限であるが、一定間隔の旋回角度でのみ計測を行うので、有限の値となる。(1≤k≤m)
- 1:ボルトの本数。本計測の場合は32。
- m:全計測回数。本計測の場合は228。
- n: kの最大値。本計測の場合は36。
- M, 計測条件 j において旋回サークル・ボルト系に加わるモーメントの大きさ。
- X_j:計測条件 j において旋回サークル・ボルト系に加わ るモーメントの x 軸まわり成分。(Fig.2参照)
- Y_i:計測条件 j において旋回サークル・ボルト系に加わるモーメントの y 軸まわり成分。(Fig. 2 参照)
- W_i:計測条件 j において旋回サークル・ボルト系に加わ る鉛直荷重。上部旋回体の自重とつり荷の重量の和。
- S:誤差平方の総和
- S_k : S のうち λ_k または μ_k を含む項の和

- Fig. 2 Directions of moments, and number of bolts モーメントのとり方とボルト番号の決め方
- α_i: W_jによりボルト i に生じる応力と W_jとの間の比例
 定数。単位は kPa/N
- β_i: X_jによりボルト i に生じる応力と X_jとの間の比例 定数。単位は kPa/(Nm)
- γ_i: Y_iによりボルト i に生じる応力と Y_iとの間の比例 定数。単位は kPa/(Nm)
- λ_k: W_jにより k の位置にあるボルトに生じる応力と W_j との間の比例定数。単位は kPa/N
- μ_k: M_iにより k の位置にあるボルトに生じる応力と M_i との間の比例定数。単位は kPa/(Nm)
- $\bar{\sigma}_i$: ボルトiの初期締めつけ応力。 W_i と M_j がともに0の場合の値を言う。
- σ_{ij}: ボルト i に計測条件 j のとき発生する応力の計測
 値
- θ_k :ジブ方向から位置kまでの角。

2.2 力と構造のモデル化

測定および解析の対象とするボルトは、旋回サークル を下部走行体に取りつけているボルトとする。それぞれ のボルトには独立に力がかかるわけではないが、ここで は単純化するため、互いに他のボルトとは独立に応力が 生じるというモデルを考える。

ここで以上のモデルを式で表すと, 誤差項を Eijとして,

となる。

2.3 最小2乗法による係数の決定

式(1)に現れる $\bar{\sigma}_i$ 及び各比例定数(α_i など)の値を、全ボルトの誤差平方の総和を最小にするという条件から決定する。すなわち、誤差平方の総和をSとすると、

旋回サークル・ボルト系に負荷される外力としては, 完全に静的な力のみを考える。したがって,水平地盤上 に設置されたクレーンでは,水平力と旋回モーメントを 考慮しないでよい。この場合,考慮するべき力は,上部 旋回体の自重とつり荷の重量による鉛直力とそのモーメ ント,およびその下部走行体からの反力とモーメントで ある。

いま,ボルトは一部を除いて円周上に等間隔に配置さ れているものとし,その本数をlとする。また,計測は 全部でmとおりについて行うものとし,その中のj回目 の計測値について,i番のボルトの引張り応力 σ_{ij} を,次 の(i)から(vi)までによる応力の和として表わすという モデルを考える。

- (i) ボルトの初期締めつけ応力 $\overline{\sigma_i}$
- (ii) 旋回サークル・ボルト系に加わる力の鉛直成分
 W,
- (iii) 旋回サークル・ボルト系に加わる力によるモーメントの x 軸まわりの成分 X,
- (iv) 旋回サークル・ボルト系に加わる力によるモーメントのx y軸まわりの成分 Y,

以上のうち(ii)から(iv)は下部走行体の剛性の影響を 考えるため、ボルト番号 *i* に応じてそれぞれの応力が決 まると考えるものである。このほか、上部旋回体の剛性 による影響を考えるため、上部旋回体に対する相対位置 *k*に応じて応力が決まると考えるものとして、

- (v) 旋回サークル・ボルト系に加わる力の鉛直成分
 Wi,これは(ii)と同じものであるが、 kにより応力を
 決めるという点が異なる。
- (vi) 旋回サークル・ボルト系に加わる力によるモーメント M_i, これも k により応力を決めるものである。

ただし、(vi)については、上部旋回体の重量バランス が左右対称でなければモーメントの u 軸まわりの成分に よる応力も考慮する必要があるが、本計測の場合はほぼ 対称であるのでこの成分については考慮しない。

---- 59 ----

產業安全研究所研究報告 RIIS-RR-85

となり, 求める条件は, 1から1までの1について, それぞれ $\frac{\partial S}{\partial \overline{\sigma}_i} = \frac{\partial S}{\partial \alpha_i} = \frac{\partial S}{\partial \beta_i} = \frac{\partial S}{\partial \gamma_i} = 0 \quad \dots \quad (3)$ が成立し、かつ同時に、1からnまでのkについて、それぞれ $\frac{\partial S}{\partial \lambda_{k}} = \frac{\partial S}{\partial \mu_{k}} = 0 \quad \dots \quad (4)$ が成立することである。 さて、 1 番目の計測を行う際には、上部旋回体の旋回角度も当然決まっており、したがって下部走行体上 1 番目の ボルトが上部旋回体に対してどの位置にあるかも決定される。すなわち、 kは i と j とによって決定される。その関 係を関数fを用いて、 $k = f \quad (i, j) \quad \dots \quad (5)$ と表すことにする。 次に、式(2)のうち、 kを含む項の1に関する和をkに関する和に変換するため、次の関数 vを導入する。 $\delta_{ijk} = \begin{cases} 1 & (k = f \ (i \ , \ j) \ \mathcal{O} \succeq \&) \\ 0 & (k \neq f \ (i \ , \ j) \ \mathcal{O} \succeq \&) \end{cases}$ (6) これにより、 kを含む項の j に関する和が、 $\sum_{i} \lambda_{k} W_{j} = \sum_{k} \left(\lambda_{k} \sum_{j} \delta_{ijk} W_{j} \right) \cdots \left(7 \right)$ $\sum_{j} \mu_{k} M_{j} = \sum_{k} \left(\mu_{k} \sum_{j} \delta_{ijk} M_{j} \right) \dots (8)$ となる。これを式(2)に代入した後、式(3)を計算すると、その第1式から、それぞれのiについて、 $\frac{\partial S}{\partial \overline{\sigma_i}} = 2 \left[\sum_i \overline{\sigma_i} + \alpha_i \sum_j W^j + \beta_i \sum_j X^j + \gamma_i \sum_j Y_j + \sum_k \left\{ \lambda_k \sum_j (\delta_{ijk} W_j) \right\} + \sum_k \left\{ \mu_k \sum_j (\delta_{ijk} M_j) \right\} - \sum_j \sigma_{ij} \right] = 0$ となり,これから, が得られる。式(3)の第2~第4式からも、同様の式が得られるが、その詳細は省略する。 次に、式(4)を計算するには、Sのうち λ_k と μ_k を含む項を S_k と置くと、 $S_{k} = \sum \sum \delta_{ijk} (\overline{\sigma_{i}} + \alpha_{i}W_{j} + \beta_{i}X_{j} + \gamma_{i}Y_{j} + \lambda_{k}W_{j} + \mu_{k}M_{j} - \sigma_{ij})^{2} \qquad (10)$ と書くことができ、次の二式が成立する。 $\frac{\partial S}{\partial \lambda_k} = \frac{\partial S_k}{\partial \lambda_k}$ (11) したがって、式(4)の第1式から、それぞれの k について、 $\sum_{i} \left\{ \overline{\sigma_{i}} \sum_{j} (\delta_{ijk} W_{j}) + \alpha_{i} \sum_{j} (\delta_{ijk} W_{j}^{2}) + \beta_{i} \sum_{j} (\delta_{ijk} W_{j} X_{j}) + \gamma_{i} \sum_{j} (\delta_{ijk} W_{j} Y_{j}) \right\} + \lambda_{k} \sum_{i} \sum_{j} (\delta_{ijk} W_{j}^{2})$ が得られる。式(4)の第2式からも同様の式が得られるが、その詳細は省略する。 ここまでに得られた、それぞれのiに対するl組の式(8)とその類似の式、及びそれぞれのkに対するn組の式(13)と

その類似の式を連立させると、 δ_i 、 α_i 、 β_i 、 γ_i 、及び λ_k 、 μ_k を未知数とする 4 l + 2 n元の連立方程式となる。この方 程式は、 α_i が λ_k に、 β_i と γ_i が μ_k に干渉して不定になるが、次の 3 式をこれに連立させることにより解くことができ

--- 60 ----

る。なお,ここで θ _k はジブ方向から k までの角度である。	
$\sum_{k} \lambda_{k} = \sum_{k} \mu_{k} \sin \theta_{k} = \sum_{k} \mu_{k} \cos \theta_{k} = 0 \dots \dots$	
以上を,部分行列を用いて整理すると以下のようになる	0
$U_i = [\overline{\sigma_i} \alpha_i \beta_i \gamma_i]^T \cdots$	(15)
$V_k = \begin{bmatrix} \lambda_k & \mu_k \end{bmatrix}^T \dots \dots \dots$	
$\left[\begin{array}{ccc}m&\sum_{j}W_{j}&\sum_{j}X_{j}&\sum_{j}Y_{j}\\\end{array}\right]$	
$\sum_{j=1}^{j} W_{j} \sum_{j=1}^{j} W_{j}^{2} \sum_{j=1}^{j} W_{j} X_{j} \sum_{j=1}^{j} W_{j} Y_{j}$	
$A = \left[\sum_{i} X_{j} \sum_{i} W_{j} X_{j} \sum_{i} X_{j}^{2} \sum_{i} X_{j} Y_{j} \right]^{\dots}$	(17)
$\sum Y_j \sum W_j Y_j \sum X_j Y_j \sum Y_j^2$	
$\begin{bmatrix} \sum \delta_{ijk} W_j & \sum \delta_{ijk} M_j \end{bmatrix}$	
$\sum_{j=1}^{j} \delta_{ijk} W_{j}^{2} \sum_{j=1}^{j} \delta_{ijk} M_{j} W_{j}$	
$B_{ik} = \begin{bmatrix} \sum_{j=1}^{j} \sigma_{ijk} & \gamma_{j} & \sum_{j=1}^{j} \sigma_{ijk} & \gamma_{j} \\ \sum_{j=1}^{j} \sigma_{ijk} & \gamma_{j} \\ \sum_{j=1}^{j} \sigma_{ijk} & \gamma_{j} \\ \sum_{j=1}^{j} \sigma$	
$\sum_{j=0}^{j=0} O_{ijk}W_{j}X_{j} = \sum_{j=0}^{j=0} O_{ijk}W_{j}X_{j}$	
$\left[\sum_{j} \delta_{ijk} W_{j} Y_{j} \sum_{j} \delta_{ijk} M_{j} Y_{j}\right]$	
$C_{i} = \begin{bmatrix} \sum_{i} \sum_{j} \delta_{ijk} W_{j}^{2} & \sum_{i} \sum_{j} \delta_{ijk} M_{j} W_{j} \end{bmatrix} \dots \dots \dots$	(19)
$\sum_{k=1}^{N} \sum_{j=1}^{k} \delta_{ijk} M_{j} W_{j} \sum_{i} \sum_{j=1}^{j} \delta_{ijk} M_{j}^{2}$	
[1 0]	
$D_{h} = \begin{bmatrix} 1 & 0 \\ 0 & \sin \theta_{h} \end{bmatrix}$	
$\begin{bmatrix} 0 & \cos \theta_k \\ 0 & \cos \theta_k \end{bmatrix}$	
$\left[\left(\sum \sigma_{ij}\right)\left(\sum \delta_{ijk}W_{j}\right)\right]$	
$E_i = \left \begin{array}{c} j & j \\ (\sum_{j} \sigma_{ij} X_j) (\sum_{j} \delta_{ijk} Y_j) \end{array} \right \cdots $	(21)
$\left[\sum \sum \delta_{ijk} \sigma_{ij} W_j\right]$	
$F_{k} = \begin{vmatrix} i & j \\ \sum \sum \delta_{ijk} \sigma_{ij} M_{j} \end{vmatrix}$	(22)
$\begin{bmatrix} i & j \end{bmatrix}$	
$\begin{bmatrix} A \\ \vdots B \\ \cdots B \\ \end{bmatrix} \begin{bmatrix} II \\ \end{bmatrix} \begin{bmatrix} II \\ \end{bmatrix}$	
$\begin{bmatrix} 1 & 0 & \vdots & 0 \\ 0 & 0 & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & \vdots & \vdots \end{bmatrix}$	
$\begin{vmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	
$\begin{vmatrix} B_{11}^T \cdots B_{l1}^T \\ \vdots \\ 0 \end{vmatrix} \begin{vmatrix} V_1 \\ \vdots \\ V_1 \\ \vdots \\ $	
$\begin{vmatrix} \vdots & \vdots \\ B_{1m}^T \cdots B_{ln}^T \end{vmatrix} = \begin{pmatrix} 0 & \ddots & \\ & C_n \\ & & C_n \end{vmatrix} \begin{vmatrix} \vdots & \vdots \\ V_n \end{vmatrix} = \begin{vmatrix} \vdots \\ F_n \\ & F_n \end{vmatrix}$	
$\begin{bmatrix} \cdots & 0 & D_1 \cdots & D_n \end{bmatrix}$	

となる。ただし、ここで0は要素がすべて0の適当な行 列を表わすものとする。

式(23)は未知数の個数より方程式の個数の方が多いが、 解は一義に決定でき、連立方程式の最小二乗解を求める アルゴリズムによって解くことができる。なお、実際の 計算には、富士通㈱の科学技術計算用サブルーチンライ ブラリSSLⅡから,実行列の最小二乗解およびその反 復改良(ハウスホルダー変換)を使用した。

3.実 験

実験は当所所有の11トンづりトラッククレーンを使用 して行った。その主な仕様を Table 1 に示す。また、旋 回サークルの構造を Fig.3 に、下部走行体への取りつけ 用ボルトの配置を Fig.4 に示す。

Fig.4から明らかなように、このクレーンではボルト

を10度ごとのピッチで等間隔に配置しているが、図中X 印をつけた4箇所はシャーシフレームのウェブ材に当た るためボルトを取りつけられないようになっている。な お、上部旋回体側のボルトにはそのような制約はなく、 全周にわたって等間隔に取りつけられるようになってい る。

機体につけられていたボルトは植込みボルトで,ナッ トにより締めつける構造であったが,実験では締め込み 作業とひずみゲージのリード線処理の関係で,Fig.5に 示す構造のボルトを製作し,全32本のボルトをこれに交 換して計測を実施した。つり上げる荷重は,ボルトの径 が小さいことを考慮し,安全のため定格荷重より少な目 の値に抑え,213kg(フックと玉掛け具のみ)から,4,213 kg までとし,負荷条件は作業半径と旋回角度を変えて合 計228通りとした。

計測の手順は以下の通りである。

- クレーンを平担なコンクリート舗装面上に設置し、 上部旋回体の重心が旋回中心上に来るように、ジブを 63度まで起こす。
- ② ひずみを計測しながらボルトを1本ずつ締めて行き、 全体を締め終えた後、ひずみの変動がないことを確認 する。
- ② 作業半径、旋回角度、及びつり荷の重量を種々に変 え、荷を地切りした後静止した状態でのボルトのひず みを記録する。

なお, ひずみゲージは, Fig.5 に示すように, 直交2枚 ゲージを1本のボルトの側面に貼り, ボルト部分のみで ブリッジを構成するよう結線して, ボルトの引張り応力 のみを検出するようにした。また, ひずみゲージのリー ド線は中継プラグを用いて容易に着脱できるようにして

Fig. 3 Structure of a slewing circle 旋回サークルの構造

Fig. 4 Arrangements of the bolts on the base carrier 下部走行体へのボルトの配置

Table 1	Specifications of the crane used in experiment
	実験に用いたクレーンの主な仕様

maximum rated load	11 tonf (108kN)			
capacity (jib use only)	11.0 \times 3.5 tonf m			
	7.0×4.8			
	4.0×6.8			
	0.5 imes 18.8			
working radius	3.0 - 18.8 m			
the length of jib	8.0 - 20.0 m			
the maximum lift	20.5m			
weight of jib	3,000 kgf (29.4kN)			
weight of revolving super structure	3,760 kgf (36.9kN)			
the number of bolts on base carrier	32			
diameter of a bolt on base carrier	16mm			
diameter of a center pitch of bolts	1,040mm			

- 62 ---

おき,下部走行体の下で細かな結線作業を行わずとも済 むよう工夫した。これはボルト締めつけ作業によるリー ド線のねじれを除去するうえでも有効な方法であった。 ボルトの締めつけ作業の状況を Photo. 1 に, 結線を終 えたボルトの状況を Photo. 2 及び Photo. 3 に示す。

Fig. 5 The bolt used for the measurement of the stress 応力測定に用いたボルト

Photo.1 State of fastening the bolts ボルトの締付けの状況

Photo. 2 State of the bolts after wiring (under the carrier) 結線を終えたボルトの状況(トラックの下方)

Photo. 3 State of the bolts after wiring (side of the carrier) 結線を終えたボルトの状況(トラックの 側方)

4.結果

実験及び計算の結果,各係数の値を Table 2 のように 得ることができた。これをそれぞれのボルトの位置に対応した極座標グラフに示したものが Fig.6 から Fig.10で ある。旋回サークル・ボルト系に鉛直力のみが作用する 場合は, Fig.6 と Fig.9 を,モーメントのみが作用する場 合は Fig.7 又は Fig.8 と Fig.10を組み合わせることによ り,応力の変動を予測することができる。

Table 2の値をもとに計算される値と実測値とを比較 すると、その差が大きい場合でも Fig.11に示す程度であ った。このことから、本報に述べた手法は、旋回サーク ル部のボルトの応力をよく表すと言える。

また,求められた各係数の値について検討すると, (i) ボルトの初期締めつけ応力 ō_iは,335MPa から

産業安全研究所研究報告 RIIS-RR-85

								· · · · · · · · · · · · · · · · · · ·	
Angle (deg)	i	र्जे (MPa)	α _i (kPa/N)	βi (kPa/Nm)	γ _i (kPa/Nm)	k	.λ _k (kPa/N)	μ _k (kPa/Nm)	
10	1	357	-0.25	0.03	0.26	1	-0.03	0.17	
20	2	353	-0.26	0.04	0.15	2	-0.00	0.17	
30	3	340	-0.30	0.05	0.11	3	0.03	0.17	
40	4	353	-0.34	0.12	0.18	4	0.03	0.14	
50	5	359	-0.22	0.24	0.32	5	0.01	0.12	
60				· · ·		6	0.04	0.09	
70	6	340	-0.23	0.26	0.16	7	0.05	0.07	
80	7	343	-0.26	0.28	0.06	8	0.05	0.04	
90	8	345	-0.24	0.18	0.03	9	0.05	0.00	
100	9	347	-0.23	0.16	-0.02	10	0.05	-0.01	
110	10	335	-0.09	0.17	-0.05	11	0.04	-0.03	
120	11	339	-0.07	0.22	-0.16	12	0.04	-0.05	
130						13	0.04	-0.07	
140	12	341	-0.11	0.19	-0.24	14	-0.01	-0.02	
150	13	339	-0.18	0.11	-0.18	15	-0.05	0.09	
160	14	344	-0.20	0.06	-0.14	16	-0.07	0.14	
170	15	336	-0.19	0.03	-0.11	17	-0.12	0.20	
180	16	355	-0.16	0.01	-0.13	18	-0.13	0.20	
190	17	347	-0.17	-0.02	-0.14	19	-0.13	0.20	
200	18	348	-0.12	-0.04	-0.11	20	-0.13	0.21	
210	19	342	-0.17	-0.06	-0.12	21	-0.07	0.12	
220	20	344	-0.13	-0.10	-0.13	22	-0.04	0.03	
230	21	345	-0.15	-0.16	-0.19	23	-0.03	-0.01	
240						24	0.02	-0.05	
250	22	346	-0.24	-0.25	-0.16	25	0.03	-0.05	
260	23	340	-0.18	-0.15	-0.03	26	0.04	-0.03	
270	24	350	-0.16	-0.17	-0.01	27	0.06	-0.00	
280	25	347	-0.22	-0.16	0.02	28	0.06	0.02	
290	26	350	-0.28	-0.18	0.06	29	0.06	0.05	
300	27	360	-0.45	-0.30	0.25	30	0.04	0.08	
310						31	0.03	0.10	
320	28	347	-0.27	-0.19	0.26	32	-0.00	0.14	
330	29	350	-0.25	-0.12	0.22	33	0.02	0.14	
340	30	347	-0.39	-0.06	0.18	34	0.02	0.17	
350	31	348	-0.29	-0.04	0.19	35	-0.01	0.17	
360	32	350	-0.29	-0.01	0.22	36	-0.02	0.17	

 Table 2
 Values determined by experiment and calculation

 実験と計算により得られた値

360MPaの間にばらついているが、これは締めつけ作 業時のばらつきを示すものであり、特に問題はない。 ただし、締めつけ作業は上部旋回体の自重が作用する 状況下で行っているので、そのときの応力は $\overline{\sigma_i}$ より5 MPa 程度低くなる。

ii) α_i は多少の凹凸があるものの,おおよそ-0.2kPa 程度の値を示している。また、 λ_k はkが16の付近(す なわちジブの反対側)で-0.13kPa/N となるほかは その絶対値が0.06以下であり、全般に小さい。したが って、鉛直力が下向きに作用することにより、全体と して鉛直力1Nにつき0.2kPaから0.4kPa程度の引 張り応力の減少があることになる。

(iii) β_iと γ_iは単調分布とは言えず, Fig.7とFig.8に おいてX印で示した部分の付近でその絶対値が特に大 きくなっている。この部分はボルトを配置しない箇所 であり,また,下部走行体の剛性が特に高いところで もある。Fig.1に示すモデルのように,応力が旋回サー クル面内の中立軸からの距離に比例した分布になると した場合は,Fig.7及びFig.8のX印付近の値が細い 点線で示した程度になると想像されるため,実測値で トラッククレーンの旋回サークル部のボルトの応力について

Fig. 7 Distribution of the factor β_i 係数 β_i の分布

Fig. 8 Distribution of the factor γ_i 係数 γ_i の分布

Fig. 9 Distribution of the factor λ_k 係数 λ_k の分布

Fig.10 Distribution of the factor μ_k 係数 μ_k の分布

Fig.11 Comparison between calculated values obtained from the experimental equation and measured values 実験式による計算値と実測値の比較

はそれのおよそ2倍の応力集中になる。

(iv) μ_k の分布はk = 1付近(ジブ側)とk = 16付近(カ ウンタウェイト側)で大きくなっており、その中間で は0に近い。このことは上部旋回体の剛性により旋回 サークルと下部走行体とを結合するボルトの応力が影 響を受けていることが考えられる。

k = 1付近で μ_k が正値 (0.2kPa/(Nm)程度)をとる ということは、ジブ側への転倒モーメント M_j が作用し たときに、ジブ側のボルト (k = 1付近)の引張り応 力が増加することを意味する。これは常識とは反対の 結論であるが、実際の応力変動はこれに $\beta_i \ge \gamma_i$ による 応力変動を加えたものであるため、計測される値は応 力の減少を示すことが多い。

(v) αiからμoの値はいずれも0.1から0.3程度の値となっている。力とモーメントのディメンジョンの違いを考えると、旋回サークル・ボルト系に加わる力が、そのまま鉛直力として作用する場合と、中心より1m程度離れてモーメントとして作用する場合とが、同じ程度のボルトの応力変動をもたらすことになる。実際のクレーンでは、力の作用点は旋回中心よりはるかに離れており、したがって、ボルトの応力変動に与える影響としては、モーメントの作用が鉛直力の作用よりはるかに大きくなる。

5. 結言

トラッククレーンの旋回サークルを下部走行体と結合 する全ボルトについて、その引張り応力を実測し、荷重 とそのモーメントによる応力変化の分布状況を示す実験 式を求める方法について検討した。

このため、それぞれのボルトの応力を、初期締めつけ 応力と、力の鉛直成分、 x 軸まわりのモーメント、及び y 軸まわりのモーメントに比例する部分に分解するほか、 上部旋回体に対し一定の位置に相当するボルトの応力が これも力の鉛直成分とモーメントに比例する部分を有す るというモデルを構築し、これによりそれぞれの定数を 求めることとした。

モデルと実測値とは最小2乗法により適合させること としたが、その際、上部旋回体との関係を表現するため、 新たに関数 δ_{ijk} を導入することにより解を求めることが できた。

得られた係数を用いて計算した応力の値は,実測値と 概ねよく一致しており,モデルが実機の状態をよく表現 していると言える。 得られた結果から、モーメントによる応力の変化は、 鉛直力による応力の変化よりはるかに大きいこと、及び、 特定のボルトに応力の集中があることが判明した。本実 験に用いた機種では、応力の集中がない場合に予想され る場合に比べ、2倍程度の応力変動があることになった。

以上により,少なくとも本実験に用いた機種では,Fig. 1に示すモデルによる応力計算を行うことは,応力の過 小評価につながることが判明した。

(昭和61年2月1日受理)

参考文献

- 前田豊, "災害事例分析——トラッククレーンの旋回 サークル取付ボルトの切断事故", 産業安全研究所技 術資料 RIIS-TN-79-2 (1980)
- 2)検査アラカルト、クレーン 22〔4〕6791 (1985)
- 前田豊、、トラッククレーンの旋回サークル部のボル ト破断"、安全工学 24〔5〕283 (1985)
- 4) Schulz,E., "Ein Beitrag zur praktichen Berechnung von Schrauben-und Nietverbindungen", Fordern und heben (6) 481-486 (1964)
- 5)渡辺貞男、"円形フランジの取付ボルトの強度"、ク レーン 8 [8] 1235-1242 (1970)
- 6)秋山稔, "ころがり軸受の工木・建設機械への応用 (2)", NSK Bearing J. [632] 29-33 (1973)
- 7) Pritts,B.A. "Swing Bearing Systems for Cranes and Excavators", SAE paper No.730738 (1973)