UDC 614.825 : 621.316 : 626.02

水中のウサギが窒息を起こす電撃の強さ

―水及び生体配置による発生限界の変化*―

山野英記** 本山建雄**

Threshold for Electric Shocks under Water Causing Suffocation of Rabbits

-Change of Threshold due to Conductivity of Water and Body Arrangements*---

by Eiki YAMANO**and Tatsuo MOTOYAMA**

Working in water such as the sea or a river and the use of electricity in such areas are increasing in recent years. These situations may lead to hazards of underwater electric shock for divers and other workers. This paper reports on an investigation of such hazards.

An experiment was conducted with rabbits, using plexiglass water tank to find the threshold of suffocation for underwater electric shock. The rabbit was submerged in water and placed between two parallel plate electrodes arranged in the tank. Then, electric shocks were applied to the subject by passing the current through the water between the electrodes. Shock currents were 50 Hz a.c. and 10 s in duration. The temperature of water was at 30°C throughout the tests.

Salt water of 3.5% or tap water was used in the tests, and the body of the rabbit was so arranged that it was parallel with or perpendicular to the direction of current. The threshold, in this study, was expressed in 6 parameters and the changes of the threshold in different parameters due to the test conditions were compared with each other.

The results of the investigation are summarized as follows;

(1) When the rabbit body was arranged in parallel with the direction of current in salt water, the mean threshold of suffocation was observed to be 22.1 V/m in underwater field intensity, or 127 A/m² in current density, or 6.0 V in potential difference on the subject.

(2) The thresholds for perpendicular body arrangement were greater than those for parallel by about twice in the field intensity and in the current density.

(3) When the conductivity of water was decreased from 6.0 S/m to 27 mS/m, the threshold field intensity increased by $3 \sim 4$ times, and the threshold current density decreased to a 70th~60th.

(4) Change of threshold in potential difference on the subject, depending upon conductivity of water and body arrangement, was observed to be less than the changes in other parameters.

(5) The lower limit of threshold of suffocation for rabbits was estimated to be 10 V/m in the field intensity of 10 s shock duration.

The upper limit of field intensity which allows a certain degree of respiration is less than 10 V/m and assumed to be about 5 V/m. (Free respiration may be sustained at 2.5 V/m which will allow the subject for voluntary movements.)

Keywords: Industrial safety, Electric shock, Threshold, Underwater work, Diving operation, Offshore engineering

^{*} 第12回安全工学研究発表会(1979)において発表

^{**} 電気研究部 Electrical Safety Research Division

產業安全研究所研究報告 RIIS-RR-85

1. はしがき

海域での調査,建設工事,敷設物の保守,あるいはサ ルベージなどにおける潜水作業では,照明,観測,アー ク溶接,酸素アーク切断,その他の目的に電気が使用さ れる。また,水中ブルドーザなどの土木機械,水中ポン プ,電気防食装置などにも電気が使用される。

このため、電気の使用法を誤ったり、故障が生じたり すれば、電撃その他の電気災害の生じるおそれがある。 水中における電撃の危険性は、海域における作業に限ら ず、プール、池、河川、湖沼などの淡水域の作業におい ても問題である。

また,安全上の不安から現在は使用されていなくても, 水域での電気使用の潜在的需要はかなり高いものと考え られ,この意味からも,水中で安全に電気を使用するた めの安全対策を確立することは重要と考えられる。

水中において生体に危害を及ぼす電撃の強さは,電撃 の防止対策の基礎ともなる重要な問題であるが,これに 関する実験的検証の報告は少ない。本研究は,水槽実験 によって生体に対する水中電撃のしきいを調べ,水中の 電撃危険性を解明しようとする一連の研究の一部である。

本研究では、水中の均一な電界にウサギを暴露した場 合に窒息の生じる電撃の強さを測定した。実験は、水の 種類(塩水と水道水)及び通電方向に対する身体の配置 を変えて行った。また、水中の電撃による窒息の発生限 界(しきい)を後述の2.4において示す6個のパラメータ で表し、これらの限界の条件による変化を比較した。

なお、下肢強直を指標とした実験と、これによる可随 限界の推定については、既に報告を行った通りである¹。

2. 実験方法

2.1 電撃の加え方

Fig.1の実験方法の概要に示すように、通電装置によ り電極を通じて水に通電し、水中のウサギに電撃を加え る。通電装置は、印加電圧の調整と通電時間の制御を行 うもので、連続最大定格出力150V、114A、または600 V、1.75Aである。出力電圧はAC50Hzで、大きさは通 電前に設定する。1回の通電時間(電撃の持続時間)は 10秒とした。電撃と電撃との間には5分以上の休止時間 を置き、電圧を順次増加させて窒息(または心拍停止、 呼吸停止)が発生するまで電撃を繰り返す。 Voltage regulator and magnetic switch

Fig.1 Schematic diagram of the experimental setup. 実験方法の概要

2.2 水槽内の条件とウサギの配置

2.2.1 水槽と水

水槽は鉄製フレームで補強されたアクリルの直方体容 器で、内側の長さ177cm,幅97.4cm,深さ67.7cmであ る。通電電極は厚さ1.5mmの銅板で、Fig.1のように水 槽の相対する2面に配置した(いわゆる平行平板電極で ある)。電極間距離は172cmである。水深はウサギ投入前 に48cm,投入後は約49cmとなった。

水には、塩水または水道水を使用、1日使用したら取り替えた。塩水は並塩(塩化ナトリウム95%以上)の3.5% 溶液で、ほぼ海水の濃度に相当する。水温は30°Cとした。このとき、塩水の導電率は6S/m、水道水の導電率 は約27mS/mであった。

生体の平均的な導電率は0.2~0.8 S/m くらいと考え られ²¹,塩水より小さく水道水より大きい。また,水道水 の導電率には時期的な変動が見られた。

2.2.2 ウサギの準備

実験には体重の平均が2.26kgのイエウサギを使用した。体幹長(横に寝かせたときの鼻先から尾の付け根までの長さ)は平均42.5cmであった。

ウサギは実験前に、ネンブタール注射液で麻酔し、寸 法測定の後、バリカンで胴体及び体肢の毛を刈り取った。 しかし実験には麻酔の覚めたものを使用し、覚めるのが 遅い場合はウサギを取り替えた。また、実験において電

撃による窒息などが生じた場合も取り替える。

ウサギは, Fig. 2 に示すように, 固定台に腹ばいにして 体肢を下に降ろした姿勢とし, 頭に潜水ヘルメットをか ぶせ, 包帯で台にしばりつけて固定した。固定台はプラ スチックフレームの台にかご形のフレームを固定したも ので, さらにこれを, おもり及び位置設定用のアクリル 板に固定した。

潜水ヘルメットは、凸字形に突起(取っ手)の付いた ふたをもつ円筒形のアクリル容器を改造したもので、ふ たの突起の天井部(直径約8 cm)をぬき、ここに、直径 約2.5cmのあなを開けたゴムシートをかぶせてゴムバ ンドで留めた。ゴムシートの穴にウサギの首を通す。ヘ ルメット内にはあごの乗る位置に水切り板を設け、その 下の壁に数個の排気孔(約1 mm¢)を開けた。空気は、 3 Wの送気ポンプによりビニールチューブを通じて連 続的に供給される。ヘルメット内の圧力は深さ約27cm の排気孔の外圧にほぼ等しい程度と考えられる。

潜水ヘルメットを装着しても呼吸はあまり変化しない。 しかし,水に沈めると,多くの場合呼吸数が20%くらい も減少し,呼吸曲線の振幅にも減少が見られた。ただし, 電撃がなければ,水中においても呼吸のリズムは安定し ており,5時間の潜水後でもすぐに歩きだすほど活動力 があったことから,ヘルメットと潜水の影響は特に考慮 していない。

2.2.3 ウサギの配置

ウサギは固定台ごと水中に配置する。ウサギは水槽の 中央に位置し,胴体中心が水深の約半分の深さになるよ うにした。ウサギの身体の方向は,Fig.1のような通電方

Fig.2 Method of fixing a rabbit to set in water. A rabbit wearing helmet is bound on the plastic frame with bandage. ウサギの固定状態 (単位:mm) 向と胴体とが平行になる方向と, 垂直になる方向(水槽の横方向)との2通りとした。

固定台上段のかご形フレームの長さは約50cm である が、水中に露出しているウサギの首から尾の付け根まで の長さは30cm 程度、胴体の幅は約10cm であった。ま た、絶縁物であるヘルメットの外側の寸法は、直径12.5 cm、ふたの突起を含む長さ16cm である(突起部は長さ 1.5cm で9.3 cm¢)。

ウサギ投入時の水の断面積は約0.477m²であるが,中 央断面内には固定台やアクリル板(厚さ1.5cm,長さ97. 1cm,幅68.5cm)などの絶縁物がある。これらの断面積 を差し引くと水槽中央での断面積は,平行な配置のとき 0.448m²,垂直な配置のとき0.439m²となる。

2.3 窒息(または呼吸停止,心拍停止)発生の 判定方法

2.3.1 電撃による呼吸・心拍の停止現象

印加電圧を段階的に増加させていくと,ウサギの体肢 が強直けいれんを起こす。さらに呼吸困難が生じ,つい には呼吸が停止するようになる。

呼吸運動の停止には二つのタイプが観察される。第1 は通電が終ると直ちに呼吸が回復するタイプで,これを 窒息と呼ぶ。第2は電撃終了後も呼吸の停止が持続する タイプで,これを呼吸停止と称する。呼吸停止は呼吸中 枢の異常によるものと考えられる³⁾。

印加電圧の増加に対し、平均的には窒息のほうが先に 起こり、呼吸停止や心拍停止はさらに強い電撃によって生 じる。しかし、実験においては、窒息の発生が認められ る前に心拍停止の発生した例が2例あった。(これらのデ ータも実験結果に含めた。)

心拍停止は、心臓からの血液の拍出が無くなるかまた は極端に減少して、循環が停止する現象である。一般に 心室細動,重症の徐脈,及び心静止(Cardiac standstill) に分類される⁴⁾⁵⁾。

2.3.2 窒息, 呼吸停止, 及び心拍停止発生の判定及び区分

本研究では、10秒間の電撃持続中に1度も呼吸せず電 撃後回復したものを窒息とする。

呼吸の検出には Fig. 3 のような呼吸検出マスクを使用 した。マスクは、ウサギの鼻と口の部分にかぶせ、ゴム ひもで頭に固定するもので、先端上部のあなに合わせて 鼻孔型呼吸ピックアプを取り付けた。鼻孔型呼吸ピック アプは、呼気と吸気の温度差をサーミスタにより電気信 号として検出するものである。また、呼吸の記録を見な くても、ヘルメットから出るあわの断続(または増減)

Fig.3 Mask fitted on rabbit nose for detection of respiration. 呼吸検出マスク

によって呼吸のあることが分かる場合も多い。

検出の方法上,得られる呼吸信号は呼吸気量を定量的 に表わすものではない。また,窒息の発生は,突然の不 連続な呼吸の変化というより,むしろ呼吸信号の振幅や 呼吸数が印加電圧の増加に従ってだんだんと減少する連 続的な変化に近い。したがって,呼吸有りと無しとの判 別には多少の偏差が伴う。実験では,原因が呼吸である 可能性があっても,その振幅が電撃前の10分の1以下の 場合は呼吸無しとみなした。

窒息と判定された例の,電撃前後の呼吸曲線と心電図 を Fig. 4 に示す。通電中の小さい波は心拍性の変動であ る。

電撃後ある程度の時間を経て呼吸が回復するものは軽 度の呼吸停止と考えられるが、60秒未満で回復したもの (2例)は窒息に区分した。60秒以上たって回復した例 はない。呼吸が回復しなかったものは窒息と呼吸停止の

Fig.4 Samples of ECG and respiratory oscillograms before and after electric shock which caused suffocation

①: Before the shock ②: During and after the shock

電撃前後の心電図及び呼吸曲線の1例(窒息 発生の場合) 併発とした。

心拍停止の内,心室細動の発生は心電図により判別さ れる。その他,呼吸の記録と比較して,心拍の異常が即 死の原因と見られたもの(2例)は心拍停止に区分した。

2.4 電撃の強さを表すパラメータ

実験における電撃の強さを表すために次の六つのパラ メータを使用した。

(1) 印加電圧 V_s 負荷時(水槽に通電中)の電源電圧 がこれである。デジタル電圧計に値をホールドさせる方 法によって測定した。ケーブル及び電流計のインピーダ ンスは小さかったので,この電圧を通電電極間の電圧と してよい。

(2) 電流 I。 I。は通電電極を通じて水に流れた全電流で ある。測定は可動鉄片型交流電流計(0.5級,100A以上 は1.5級)で行った。

(3) 生体の電圧差 $V_{\rm B}$ 通電方向のウサギの両端に近い部位に検出電極を着け、この間の電位差をデジタル電 圧計とプリンタによって測定、記録した。検出電極は全 長23mmの安全ピンであり、装着部位は、平行な配置の とき首の背中側(潜水ヘルメットのすぐ外の位置)と尾 の付け根の背中側との2部位、垂直な配置のとき両わき 腹(肋骨の後端上で、背中と腹の中点付近)とした。

また,水槽にウサギを入れる前に検出電極間の水平距離 離dを測定した。電極位置の鉛直方向のずれは水平距離 の約10分の1以下である。

(4) 水中の電界 E_w E_wは印加電圧 V_sと通電電極間 距離(1.72m)との比で,電極間の平均的な電界(の強さ) である。

水槽からウサギを出しても電極間の電圧 Vsはほとん ど変化しない。したがって Ewは、電極界面での電圧降下 を無視すれば、ウサギを入れる前の水中の電界とみなす ことができる。言い換えれば、ウサギの占める位置の、 ウサギが存在しないときの電界である。

(5) 水中の電流密度 Jw 電流 Lsを水の断面積(0.477 m²)で割って算出した。既に述べたように水槽の中央付 近では断面積はさらに小さくなるので、断面積を0.477 m²とすることは電流密度を小さめに評価することにな る。すなわち、この値に対して水槽中央の平均の電流密 度は、平行の場合 7%、垂直の場合 9%大きい値となる。

(6) 生体の(通電方向の)電位傾斜 *V*_B/*d V*_B/*d* に おいて, *V*_Bは通電方向の生体両端の電位差, *d* はその検 出電極間の水平距離である。通電方向に平行に y 軸をと れば, *V*_B/*d* は y 軸方向の電位傾斜(*∂V*/*∂* y : 電界の y

-134-

成分)の平均に近い量である。また、大局的には2個の 電極を結ぶ線も電気力線もУ軸に平行と考えれば、大ま かではあるが、 $V_{\rm B}/d$ は生体内の平均的な電界となる。

3.実験結果と検討

3.1 実験結果

ΞŅ

Table 1 に実験条件等のまとめを、Table 2 に実験結果(窒息の発生限界)を示す。2.3で述べたように、表の

データには,窒息ではなく心拍停止の発生した2例も含 まれている。また,呼吸停止あるいは心拍停止の併発し た例もある。

Table 2 において窒息の発生限界は六つのパラメー タで表示されている。このうち・印加電圧 V_s , 電流 I_s , 及び生体両端の電位差 V_B は測定によって直接得られ, 他の三つはこれらの測定値と幾何学的条件から算出され た。

窒息を生ずる程度の電撃では、ウサギの上肢・下肢は 強直し、胴体も伸びぎみの形となる。ウサギは全く身体

天映の個女	•			
Water conductivity (S/m)	Body arrangements in relation to current flow	Temperature of water (°C)	Weight of rabbits (kg)	Number of Samples N
6.0	Parallel	30.5	2.16±0.25	23 *1
	Perpendicular	29.7	2.33±0.27	20
0.027	Parallel	29.9	2.23±0.24	20 *2
	Perpendicular	30.1	2.31±0.33	20 *3
	Water conductivity (S/m) 6.0 0.027	Water conductivity (S/m) 6.0 Body arrangements in relation to current flow 6.0 Parallel 0.027 Parallel Perpendicular	Water conductivity (S/m)Body arrangements in relation to current flowTemperature of water (°C)6.0Parallel30.56.0Perpendicular29.70.027Parallel29.9Perpendicular30.1	Water conductivity (S/m) Body arrangements in relation to current flowTemperature of water $(^{C})$ Weight of rabbits (kg) 6.0Parallel30.5 2.16 ± 0.25 6.0 Perpendicular 29.7 2.33 ± 0.27 0.027Parallel 29.9 2.23 ± 0.24 Perpendicular 30.1 2.31 ± 0.33

Table 1	Experimental	conditions	and	observed	effects	other	than	suffocation.
	中陸の協商							

(Average, or average \pm s. d.)

*1 Cardiac arrest concurred in 1 example.

Respiratory inhibition concurred in other 1 example.

* 2 Cardiac arrest concurred in 2 examples.

* 3 Cardiac arrest only in 2 examples.

Respiratory inhibition concurred in other 1 example.

Table 2 Threshold of suffocation for rabbits for underwater electric shock. Threshold is expressed in terms of 6 parameters. Shock currents were 50 Hz a.c. and 10 s in duration. 水中のウサギに窒息を起こす電撃の強さ

AC 50 Hz, 持続時間 10s の均一電界に暴露した場合

Conditions		Threshold of suffocation					
Kind of water	Body arrangement	Applied voltage V _S (V)	Current I _S (A)	Potential difference on rabbit V _B (V)	Field intensity in water E_W (V/m)	Current density Jw (A/m ²)	Potential gradient in rabbit V _B /d(V/m)
Salt water	Parallel	38.2 ± 4.9	60.7±8.3	6.01±0.93	22.1±2.8	127 ± 17	20.6±3.0
	Perpendicular	68.2 ± 10.2	110 ± 16	7.15±1.23	39.4±5.9	231±33	70.6 ± 11.0
Tap water	Parallel	109 ± 13	0.821±0.139	8.20 ± 1.31	62.7±7.3	1.72±0.29	27.7±4.6
	Perpendicular	262 ± 30	1.78±0.20	5.25±0.70	151±17	3.73 ± 0.41	53.7±6.7

(Average \pm standard deviation)

— 135 —

—— 正誤表——

産業安全研究所研究報告 RIIS-RR-85-12, 山野,本山 「水中のウサギが窒息を起こす電撃の強さ」

の自由を失い,上記のように呼吸停止などで即死した例 もあった。

実験の範囲では,窒息の発生限界と体重との相関は認 められなかった。他の確率的因子によるばらつきのほう が大きい。

3.2 検討

3.2.1 各パラメータで表した発生限界の条件による変 化

Table 2の塩水及び水道水それぞれの場合について、 パラメータごとに、身体の配置方向による窒息の発生限 界の変化を、平行の場合の発生限界に対する垂直の場合 の発生限界の比で表すと、Table 3の左側の2列(A列と B列)のようになる。また、Table 3の右側の2列(C 列とD列)には、身体の配置方向が平行及び垂直の各場 合についての、水の種類による発生限界の変化(比)を 示す。変化(比)は塩水の場合の発生限界を1としたと きの水道水の場合の値である。

また Fig.5は、塩水・平行の場合の平均を1と置いてこ れに対する比で各場合の発生限界(平均と最大・最小) を表したものである。パラメータごとに、左から順に塩

Table 3 Ratios of suffocation thresholds in 6 parameters showing changes due to body arrangement (A, B) or due to kind of water (C, D). 各パラメータで表した窒息の発生限界の,身 体配置及び水の種類による変化(比)

	Ratio of thresholds					
Deveryotava	Perpeno parallel	licular to	Tap water to salt			
ratameters	—A— In salt water	—B— In tap water	—C— In parallel	—D— In perpen- dicular		
Applied voltage Vs	1.8	2.4	2.9	3.8		
Field intensity in water E_W	1.8	2.4	2.9	3.8		
Current Is	1.8	2.2	1/74	1/62		
Current density Jw	1.8	2.2	1/74	1/62		
Potential diffe rence on rabbit V _B	1.2	1/1.6	1.4	1/1.4		
Potential gradi- ent in rabbit V _B /d	3.4	1.9	1.3	1/1.3		

水・平行,塩水・垂直,水道水・平行,水道水・垂直の 各場合の発生限界が示されている。

(1) 身体の配置方向の影響 Table 3のA列とB列 においてはほとんどの値(発生限界の比)が1より大き い。すなわち,生体の電位差を除く各パラメータで表し た発生限界は,塩水・水道水のいずれにおいても,ウサ ギの胴体が通電方向に対して垂直な場合のほうが平行な 場合より大きい。言い換えれば,平行,すなわち胴体に 対して縦方向の通電のほうが窒息を生じやすいというこ とである。このことは心拍停止についても同様であり⁶, また陸上の電撃でも類似の結果が得られている³。

生体の電位差 V_Bは,水道水(B列)において1.6分の 1と小さくなっており,塩水の場合(A列)と変化の仕 方が逆になっている。その理由は明らかではないが,電 位差 V_Bに何かの系統的な誤差のあったことも考えられ る。

いずれにしても、垂直と平行とでは検出電極間の距離 $d が約3倍も異なるにかかわらず、生体の電位差 <math>V_B$ の配 置方向による変化は小さい。(そしてこのために、生体の 電位傾斜 V_B/d の変化が大きくなっている。)このこと は、前述のように窒息の起りやすさに方向依存性のある こと、及びこれが物理的条件よりもむしろ生体の特性に 起因していることを示している。

Table 3 において各パラメータの値(発生限界の比) は、A列とB列とで異なっている。すなわち、定量的に は、発生限界の配置方向による変化の仕方は水の種類に によって異なっている.(またC列・D列の、水の種類に よる発生限界の変化も配置方向によって異なる。)しか し、これらの違いがすべて測定上の誤差によるものとは 考えにくく、生体と水の導電率の大小関係の違い、絶縁 物であるヘルメットや固定台の影響の違いなど他の要因 の影響もあるものと考えられる。

(2) 水の種類(導電率)による変化 Table 3のC列・ D列に水の種類による窒息の発生限界の変化(比)を示 した。C列とD列(平行と垂直)とは数値的には多少異 なるが、いずれにおいても電流と電流密度の変化が著し い。すなわち、水が塩水から水道水になったとき、印加 電圧 V_s及び水中の電界 E_wのしきい値はおよそ3~4倍 に増加しているが、電流 I_s及び電流密度 J_wのしきい値は 70~60分の1に減少している。

また、このときの水の導電率 x の変化が約220分の1 であることから、水中電界及び電流密度で表した窒息の 発生限界 E 及び J は、大まかに見れば、次の関係にある ことが認められる。(電圧と電流についても同様。)

水中のウサギが窒息を起こす電撃の強さ

Fig.5 Changes of suffocation thresholds in 6 parameters for different test conditions. (Thresholds are expressed in ratios to the average in the case of salt water and of body arrangement in parallel with current.) 各パラメータの窒息の発生限界の条件による変化(塩水・平行の場合の平均を 1としたとき.)

$\frac{J_2}{J_1} \approx \frac{\kappa_2}{\kappa_1} \frac{E_2}{E_1}, \quad \text{sch} \frac{J_2}{J_1} \cdot \frac{E_1}{E_2} \approx \frac{\kappa_2}{\kappa_1}$

ここで、 添字1は塩水における値、 添字2は水道水に おける値を示す。

上式は,この実験条件のように,生体に対して水の断 面積が大きく,水のコンダクタンスが支配的な場合に成 立するものと考えられる。

上の関係と Table 3の結果は,窒息を生ずるという条件の下では,電圧や電界よりも電流や電流密度のほうが 導電率の変化を大きく負担しているということもできる。 3.2.2 電撃の危険性を表すパラメータ

水中の電撃危険性を論ずるとき,電圧や電流で表した 発生限界が普遍性をもたないことは明らかである。

水中の電界や電流密度で表した発生限界は、より普遍

性のある目安となりうるが、既に見たように電流密度で 表した発生限界は水の導電率による変化が大きい。した がって、水中電界のほうがより好ましいパラメータ(ま たは尺度)と言える。既に報告"したように、ウサギと平 行に金網を置いた場合でも、予想される通り、特定の影 響を生ずるときのウサギの位置の電界はあまり変化しな い。

漏電事故時の水中の電界(生体が占める場所の,生体 が存在しないときの電界)はある程度は予測も可能であ る。またこの電界から,手足を伸ばしたときの長さなど を想定することにより,生体の電位差を見積もることも できる。

水中電界で表した発生限界は塩水・平行の場合に最小 となるので,このときの値を生体に対する限界として採

産業安全研究所研究報告 RIIS-RR-85

用すれば、身体の配置が異なっても、また水の導電率が 減少しても危険が増大することはない。

本実験のようにウサギの身体が水没しているほうが, 水面にある場合よりも、電界で表した(心拍停止の)発 生限界は小さくなるという実験結果も得られている⁶。 また、ウサギに対する発生限界(電界)を人間に適用し ても小さすぎる不都合はないと考えられる¹⁾。

ただし,水中の電界もあらゆる状況で最も有利なパラ メータというわけではない。水中電界による発生限界は, 水の断面積(すなわち生体と並列の電流バイパス)が十 分に大きい場合と小さい場合とで異なることが予想され るが,その変化の程度などは不明である。

また,漏電遮断器などの安全装置への応用を考えると きには,電流あるいは電圧のほうが検出に便利である。 ただ,電界で表した発生限界をもとに,ある接近限界距 離に対する発生限界電流を推定することは可能な場合も ある。

水のバイパスが小さい場合は、生体が存在するか否か によって経路のコンダクタンスが変化し、電流も変化す る。また生体両端の電位差も、バイパスの大きい場合に 比べ、変化が大きいと考えられる。生体の導電率が水よ り小さい場合(海水の場合)は、生体が来たとき、コン ダクタンスと電流は減少し、生体の電位差は増加する。 生体の導電率が大きい場合はこれと逆の変化が起こると 考えられる。 バイパスのない場合は陸上の電撃と同じになり,電撃 の強さは一般に電流で表される。

3.2.3 窒息を起こす電界の下限界

窒息発生が初めて確認された水中の電界 Ewの累積頻 度を正規確率紙にプロットすると、Fig.6のようにだい たい直線となり、これらのデータに正規分布が適合する ことを示している。

窒息を起こす水中電界の下限界は、図の分布曲線を直線で近似したときの0.5%分位点が一つの目安となる¹⁾。 Fig.6(a)によれば、塩水・平行の場合、0.5%分位点は13 V/m である。

ただし、水中電界は電極インピーダンスを無視し、印 加電圧と通電電極間距離から算出したので、水中の真の 電界はこれより多少小さいことが予想される。例えば、 通電電極と別にプラチナ線の検出電極を使用した場合は、 印加電圧から求めた電界より8.5%小さい電界となっ た⁷⁾。また、4点プローブで求めた水中の電界は17%小さ い値となった¹⁾。

したがって,窒息を起こす水中電界の下限界は10V/m 程度と考えることができる。なお,実験データ中の最小 値は15.8V/m である。

本実験の窒息は10秒の通電中1度も呼吸しないことで ある。したがって、これが起こらないことと、自由に呼 吸ができることとは同じではなく、その間にはかなりの 隔りがある。また10V/m では身体の自由も利かない。し

かし,漏電遮断器その他の安全装置により電撃の持続時 間が短時間に制限される場合には,電界が上記の限界以 下であれば即死は起こらないものと考えられる。

上記の半分, すなわち5 V/m の電界であれば, ほとん どの場合ある程度の呼吸が可能なようである。ただし, どの程度の時間この電界に耐えられるかは明らかではな い。水中電界が可随限界 (2.5V/m) 以下であれば, 長時 間 (100~200min) にわたり自由な呼吸が可能であるⁿ。

実験条件では、生体の10倍程度以上の水の断面積があった。

4. むすび

水槽実験によって、水中の均一な電界にウサギを暴露 した場合の窒息の発生限界を調べ、発生限界を表す各パ ラメータの条件による変化を比較した。条件には、水が 塩水及び水道水の場合、また身体の配置が通電方向に対 して平行及び垂直の場合がある。水温は30°Cとした。電 撃はAC50 Hz、持続時間10 s である。

研究の結果を整理すると以下のようになる。

(1) 塩水で平行な配置の場合,潜水したウサギに窒息を起こす電撃の限界は,水中の電界で平均22.1V/m,電流密度で平均127A/m²,ウサギの胴体の電位差で平均 6.0Vとなった。(水の導電率は6.0S/m である。)

(2) 窒息の発生限界は、ほとんどのパラメータにおいて、平行な配置のほうが垂直な配置の場合より小さい。

(3) 水の導電率が6.0S/m(塩水)から27mS/m程度 (水道水)に減少したとき,水中の電界で表した窒息の 発生限界は3~4倍に増加し,電流密度で表した発生限 界は70~60分の1に減少した。

(4) この実験の範囲では、生体の電位差で表した発生 限界は条件による変化が小さかった。

(5) 水中で生体が占める(可能性のある)場所の,生 体が存在しないときの電界は,ある程度の普遍性と実用 性とを兼ね備え,水中における電撃の危険性や影響の発 生限界を表すのに比較的有利なパラメータと言える。

(6) 水中の電界が5 V/m 以下であれば、ある程度の 呼吸が可能と考えられる。(2.5V/m の可随限界以下であ れば、長時間自由な呼吸が可能である。)

なお、十分な結果が得られなかったので本稿では省略 したが、実海域実験においても実験室と大差のない電圧 (通電電極間)でウサギに窒息が生じた⁸⁾。すなわち、水 槽内の電撃危険は実海域のそれと掛け離れたものではな い。

本研究は,科学技術庁海洋開発調査研究促進費によっ て実施されたものである。関係各位に深く感謝の意を表 する。

(昭和61年2月4日受理)

参考文献

- 山野英記,本山建雄,田畠泰幸: *水中において下 肢強直を起す電撃の強さと許容限界"(産業安全研究 所研究報告,RR-30-1),労働省産業安全研究所, 1981
- L.A. Geddes and L.E. Baker: "The Specific Resistance of Biological Material——A Compendium of Data for the Biomedical Engineer and Physiologist ", Med.& Biol. Engng., 5,271~293, 1967
- 3)山野英記: "電撃危険とその影響の発生限界",静電 気学会誌,9,6,376~383,1985
- 4)大橋正次郎: "電撃傷",安全工学,16,1, 36~43,1977
- 5)一色高明,梅田徹,町田潔: "心拍停止",治療,
 62,4,745~754,1980
- 6)山野英記: "水中のウサギに危害を生ずる電撃の強 さ",電気学会環境・安全研究会資料,ES-81-3, 15~24,1981
- 7)山野英記,本山建雄,田中隆二:第17回安全工学研 究発表会講演予稿集,pp.57~60,1984
- 4)山野英記,本山建雄,田畠泰幸: "海中における電 撃危険性とその防止に関する研究 (III)"(昭和54年 度海洋開発調査研究促進費報告書),労働省産業安全 研究所,pp.37~77,1980