Research Reports of the National Institute of Industrial Safety, NIIS-RR-03 (2004) UDC 624.12:625.731.2:624.131.543

破砕を伴う落石現象の物理モデル化に関する研究

伊藤和也*,豊澤康男*,日下部治**

Centrifugal Modelling of Rockfall Simulation Associated with Rock Fracturing

by Kazuya ITOH*, Yasuo TOYOSAWA*, and Osamu KUSAKABE**

Abstract; Rock-fall is the rapid movement of rock from a steep slope. The types of movement may be classified into four types: free falling, bouncing, rolling or sliding. Rockfalls along highways often occur where natural rock slopes are cut. When a piece of rock reaches the roadway below, it might cause a hazard to roadway users. In Japan nationwide inspection on potentially dangerous slopes has been carried out every five years and hundreds of millions of yen are annually spent on rock slope maintenance, and rockfall hazard mitigation on both new and existing slopes. Although rock-fall protections works are applied, rock-fall prone areas are increasing every year because of road extension work and degradation of slope materials. In order to implement a rockfall protection work, it is important to evaluate and estimate the response of a recognized rockfall site, its scale and time, the rockfall (i.e., velocity, bounce height, falling course, final position), rockfall forces (i.e., impact force, kinetic energy), etc. Several researchers have developed computer simulations to investigate rockfall mechanism. These provide estimates of probable bounce heights and velocities for rockfall. Recently, additional statistical data have been added providing probability distributions for velocity, energy and bounce height of rockfalls. The computer program is applicable to almost all slope configurations. It is more flexible than design criteria that require slopes of given configurations. Simulation, however, requires detailed site conditions and slope geometry input data and assumptions; therefore accuracy varies, depending on the quality of the input data. It is expected that centrifuge modeling could provide a more consistent set of data, properly taking both stiffness variation with depth and damping characteristics of soil into account.

In this study, a series of centrifuge model tests were performed to observe the movement of falling rocks during the falling process. The test program includes the measurements of trajectory of falling rock captured by a high speed camera. A series of centrifuge model tests confirmed that falling rocks exhibit various types of falling modes; free falling, rolling or sliding, sometimes associated with rock fracturing during the falling process. As a result, in the case of model crushable rock, it was found that the observed movement patterns were rolling with small bounces, and rolling with large bounces, occurring fracturing

Keywords; Rock fall, Centrifuge model test, Trajectory, Safety.

* 建設安全研究グループ Construction Safety Research Group

** 東京工業大学大学院 理工学研究科 土木工学専攻 Department of Civil Engineering, Tokyo Institute of Technology

1. **はじめに**

国土の70%が山岳・丘陵地である我が国は,落 石・土石流・斜面崩壊・地すべりなどの斜面災害が 毎年多発している。この様な斜面災害は,ときに人 命や財産を奪い,また交通網を遮断するなど地域に 経済的な打撃を与える。中でも,落石等の危険箇所 は全国に約77,000箇所あり,それらによる道路災害 は,1年間に約4,150件発生している。そのため,毎 年多くの予算を計上し落石対策が行われているが, 現状は法面の劣化が経年的に進行しており,危険箇 所は減少することなく増加している¹。

落石防災対策においては,発生源における落石発 生危険性の評価とともに,落石がどのような経路, 跳躍高さ,および速度を持って保護対象に到達する かを評価することが必要となる。しかし,落石現象 は落下する岩石の位置エネルギー・大きさ・形状と 斜面地盤の物性,斜面角度などによって影響される 複雑な現象であり,いまだに落石の運動メカニズム や衝突現象などについて十分な解明には至っていな い。そのため実務レベルでは,既往の現場落石実験 等の実績に基づいて,概ね安全側に設定された経験 則²¹⁻⁴を用いている場合が多い。

しかし,経験則を適用することが適当ではない現場 も多く存在するため,近年では落石が斜面を落下する 際の落下軌跡や速度等を定量的・合理的に予測評価 するための落石シミュレーション手法が多く開発・提 案されている⁵⁾⁻¹²。このような落石シミュレーション手 法の礎となる落石の運動形態を初めて体系的に示し

Fig. 1 Rockfall travel mode from Ritche Ritcheによる落石の運動形態¹³

たのはRitche¹³⁾である。Ritcheは,落石防止溝の設計 法を見直すために実施した現場実験において16mm スローモーションカメラを用いて落石の運動を詳細に 観察した。観察の結果,Fig.1に示すように落石の運 動形態は斜面勾配により,落石がある区間で何度も 衝突を繰り返し回転しながら落下する回転運動 (Roll),一度あるいは二度衝突し飛行する跳躍運動 (Bounce),そして 跳躍が見られない落下運動(Fall) の3つに大別している。そして,これら3つの組み合わ せを用いて落石運動を表現するシミュレーション手法 の可能性について示唆した。Ritcheの実験結果は,多 くの研究者に引用され,その後のシミュレーション手 法の発展に大きく寄与した。

これらの手法は,経験則に基づく予測に比べれば 合理性に優れているが,現地条件に対応したモデル 化,計算パラメーターの設定法,そして計算結果の 妥当性の検証など多くの課題も残されている。その ため,落石シミュレーション手法のパラメーターを 得る目的で,現場落石実験^{11),14)~17)},室内模型実験 ^{5,7),18)},落石現場調査^{19,20}などが国内外にて実施されて いる。しかしながら,落石の運動メカニズムは,斜 面の形状や凹凸,地質の硬軟,植生状況,落石の形 状や寸法などによって複雑に変化するため,まだ未 解明な部分が多いのが現状である。

斜面からの落石により作業者が被災する労働災害 について調査したところ,過去10年間で40件程度報 告されていた²¹⁾。災害事例の中には,落石が落石対 策工を突破・跳躍して防護されている箇所にいた労 働者が被災する事例も数例報告されている。Fig.2 は落石防護柵の改修工事の際に発生した労働災害の 一例である。この災害事例では,落石が斜面上を転 がり落ちる際に、一部が破砕したことにより、想定 外の跳躍量が発生したため,落石防護柵を飛び超え, 被災者の頭部に直撃したものと考えられている。こ のような現象は落石対策工の設計や落石シミュレー ション手法にも考慮されていないのが現状である。 一方,落石対策工の構造設計は10倍以上の過大設計 であるとの指摘がなされているが,斜面上の落石の 破砕現象を考慮することにより,落石対策工への衝 撃圧はさらに低減できる可能性もある。

平成14年10月に国土交通省により策定された「土 木・建築にかかる設計の基本について」の中で,落 石は「偶発作用」として扱われ,大規模地震となら び「統計的な評価が行えないが,作用として理解が 容易な方法で明示するよう努めるものとする」と記 載されている²²。そのため,今後の落石対策工の設 計方法は,落石シミュレーション等から跳躍高さ・

Fig. 3 Type of movement of falling rocks. 実際の落石の運動

設計耐力・落石の運動エネルギーを設定する「性能 設計」に移行していくものと想像される。しかしな がら,上述したように落石現象は落下する岩石の位 置エネルギー・大きさ・形状・破砕強度と斜面地盤の物性,斜面角度などによって影響される複雑な現象であり,いまだに落石の運動メカニズムや衝突現象などについて十分な解明には至っていない。

このような背景から,本研究では多くのパラメー ターが自明となり,応力条件を実際と等価にするこ とが出来る遠心模型実験手法を用いて,Fig.3に示 すような破砕を伴いながら衝突と跳躍を繰り返す落 石現象について物理モデル化を行い,現場実験では 行うことができない多くのパラメトリックスタディ ーを行い,落石現象の運動形態を把握するものであ る。本報では,遠心場落石発生装置の開発・試作と それを用いた実験結果について示す。

2. 落石現象の物理モデル化および実験方法

2.1 遠心模型実験装置

全ての実験は (独)産業安全研究所が所有する遠心 模型実験装置(NIIS Centrifuge Mark-II, Photo 1)を用

Photo 1 NIIS Mark II Centrifuge. (独)産業安全研究所 遠心模型実験装置

Photo 2 General arrangement of models. 実験装置全景

いて行った。遠心模型実験装置の主要諸元をTable 1 に示す。本装置は平成16年に更新されたものであり, 静的実験と動的実験のプラットホームを専用化させ ることで,実験の効率を高めている。今回使用した 静的実験用プラットホームの寸法は1100mm× 1500mmであり,大型装置並の搭載スペースを有し ている。なお,計測は遠心模型実験装置内に搭載し た計測アンプからGP-IBを介して無線LANにより遠 心模型実験装置外に伝送している。本装置の詳細は 既報²⁰に譲る。

2.2 実験土槽と模型斜面

本実験装置の全体図をPhoto 2に示す。使用した土 槽は内寸が幅500mm,奥行き300mm,高さ400mmの 鋼製であり,容器の前面には幅32mmのアクリルを 設置し,側面から挙動を観察できるようにしている。

Table 1 Technical specifications of NIIS centrifuge. 遠心模型実験装置の主要諸元

(1)装置本体(静的実験用プラットホーム)						
f	是大遠心加速度	100 g				
	最大回転数	194.1 rpm				
	最大搭載質量	1000 kg				
	遠心場能力	50 G - tons				
	有効半径	2.38 m				
プラ	ラットホーム寸法	1.1 m x 1.5 m				
主電動機		440V				
		直流 90 kW				
	(2)周辺機器					
<u>п</u> –	タリージョイント					
油正	最大圧力	21.0 MPa				
1円/二-	ポート数	2				
売口	最大圧力	0.7 MPa				
空庄	ポート数	1				
	最大圧力	0.5MPa				
小庄	ポート数	2				

Photo 3 Detail of Ball Dropping System. 遠心場落石発生装置

模型斜面は石膏と豊浦砂を重量比3:1にて配合した 混合試料を鉄製モールド(幅400mm,奥行き260mm, 高さ50mm)に打設し,凹凸がないように成形をし て作成した。この鉄製モールドの底部を鉄柱で支持 することにより任意の角度の斜面にすることが可能 となる。本実験では,自然斜面での落石現象にて 様々な落石形態を発生すると言われている40度とな るように調整した。

Photo 4 Model rocks (left: plaster (25 %) and Toyoura sand (75 %) mixture sphere, middle: plaster (25 %) and Toyoura sand (75 %) mixture block, right: aluminium sphere).

落石模型(左:石膏(25%)&豊浦砂(75%)混合球,中:石 膏(25%)&豊浦砂(75%)混合矩形,右:アルミニウム球)

Photo 5 Mixture spheres making mold. 混合試料の球形を作成するためのモールド

Fig. 4 Point load tests (left: apparatus for the point load test, middle: typical load - displacement relationship of point load test, right: illustrations of particles during test). 点載荷試験(左: 点載荷試験装置,中:荷重~変位関係の一例,右:破砕の進展状況)

2.3 遠心場落石発生装置

本研究にて開発した遠心場落石発生装置をPhoto 3 に示す。本装置はリボルバー式落石ホルダー(最大8 球搭載),それを回転させるモーター,そして落石 ホルダーに充填された落石を斜面に落下させる落石 開口部(空圧式高速シャッター)から成り立っている。 本装置は遠心場にて落石開口部を解放させることに より模型落石を落下させるシステムである。また, リボルバー式落石ホルダーをモーターにより回転さ せることにより,落石を落石開口部に充填すること ができるため,1度の遠心模型実験装置の運転にて 最大8個の落石を落体させることができるようにな っている。

2.4 落石のモデル化について

本研究にて使用した落石模型はPhoto 4に示すよう に,材質を アルミニウム, 石膏と豊浦砂の混合試 料(重量比1:3)の球体タイプ(20mm)と, 混合試料 の矩形タイプの3種類である。アルミニウム球は剛体を 想定したものである。一方,混合試料は落体運動中に 破砕を生じる場合を想定して作成したものである。混 合試料の球体模型はPhoto5に示すようなモールドにス ラリー状になった試料を注入することにより作成して いる。このモールドは1度に6個の球を作成することが 出来る。本研究では,モールドの中から1球のみを実 験に使用し,他の5球は点載荷試験に供し,点載荷圧 裂強度とそのばらつきを求めている。Fig.4は点載荷

Table 2	Statistical values of point load test.
	点載荷試験の圧裂強度の統計結果

	豊浦砂+石膏 (重量比 3:1)		
試験体個数	18		
平均点載荷圧裂強度(kPa)	105.36		
標準偏差(kPa)	43.66		
変動係数	0.43		

Photo 6 Closed-up view of the high speed camera. 高速度ビデオカメラの遠心模型実験装置設置状況

Table 3 Main specifications of the high speed camera	э.
高速度ビデオカメラの主要諸元	

センサー素子	CMOS (カラー/モノクロ)
データ/ピクセル	10 Bit/ピクセル
撮影コマ数	$100 \sim 21,000$ frame per sec (fps)
撮影速度	up to 4,000 fps at 512 x 512 pixel
	up to 5,000 fps at 512 x 500 pixel
	up to 10,000 fps at 512 x 248 pixel
レンズマウント	C-Mount or F-Mount available
外径寸法(mm)	本体部:
	W145xH142xD296
	カメラヘッド部:
	W80xH80xD77
記憶メモリー	10.4 秒 at 5000 fps
電子シャッター	OPEN to 1/200,000 秒

試験の荷重~変位関係の代表的なグラフを球体の破 砕の進展状況とともに示したものである。最大荷重 は変位が0.6~1.0mmの際に発生しており,その後急 激に低下し,最大値の0~20%程度の値となってい る。Table 2は点載荷圧裂強度の統計結果を示したも のである。ここで,点載荷圧裂強度のは得られた最

Photo 7 Closed-up view of the camera head and lighting system. カメラヘッドと照明装置の設置状況

Table 4. Test cases 実験ケース

No. Case	1	2	3	4	5	6	7	8
RF-01	В2	-	B4	В5	R1	R3	AL	В3
RF-02	B4	В5	B6	В7	B8	R4	AL	-
記号								
B: 豊浦砂+石膏(重量比 3:1)混合球体								

B: 豊浦砂+石膏(重重比 3:1) 混合球体 R: 豊浦砂+石膏(重量比 3:1) 混合躯体 AL: アルミニウム球

※ここで,番号はモールド打設 No を示す

大荷重F₀から,以下の式を用いて求めた²⁴⁾。

$$\sigma_t = 1.4 \frac{F_0}{2\pi a^2} = 0.9 \frac{F_0}{D^2}$$

ここで, F_0 =最大荷重,aは球体の半径,D=2aは載荷点間距離である。

点載荷試験での統計結果から,変動係数が0.43と 比較的ばらついている。Takeiらは破砕性地盤の載荷 試験の時間依存効果をモデル化する際に,人工材料 であるチョークや自然材料である石英などの材料を 用いて圧裂試験を行っている²⁵)。その結果,自然材 料の変動係数は0.45程度であることを確認した。し たがって,本研究の模型落石の点載荷圧裂強度のは 自然材料程度のばらつきであるといえる。

2.5 高速度ビデオカメラシステム

落石の運動形態を確認し, さらに詳細に落石の軌

No. Case	1	2	3	4	5	6	7	8
RF-01	【B-2】 回転 微砕	-	【B-4】 回 転 → 破 砕→回転	【B-5】 回 転 → 破 砕→跳躍	【R-1】 計測失敗	【R-3】 回転 →滑落	【AL】 回転	【B-3】 回転 微砕
RF-02	【B-4】 分 解 → 跳 躍・衝突→ 破砕	【B-5】 回転 微砕	${B-6}$ 回 転 → 破 砕 → 跳 躍・衝突	【B-7】 半球状に 破壊. 跳躍量大	【B-8】 回転 微砕	【R-4】 滑落	【AL】 回転	-

Table 5 Characteristics of rockfall movement. 全ケースの落石運動の特徴

Photo 8 Typical example of simulated trajectory of falling aluminum sphere (RF-01-7). アルミニウム球の落石模型による落石軌跡の一例

跡を把握するために,高速度ビデオカメラシステム を使用した。この高速度ビデオカメラシステムは平 成17年度に遠心模型実験装置に導入されたものであ り,遠心模型実験装置に搭載するために耐G性,カ メラケーブル,制御計測室でのリモートコントロー ル機能が備わっている(Photo 6)。高速度ビデオカ メラシステムの主な仕様を,Table 3に示す。高速度 ビデオカメラは1秒間で5000コマの映像を撮影する ため,露出時間は1/5000秒よりも短い。そのため, 照明は非常に高照度なランプが必要とされる。そこ で,本研究ではPhoto 7のように3個の八ロゲンラン プを搭載した照明装置を2台模型土槽の左右に設置 した。

2.6 実験ケース

本実験のケースはTable 4に示す全14ケースであ る。これら全てのケースについて,側面からの高速 度ビデオカメラによる撮影を行い,模型落石の運動

Photo 9 Typical example of simulated trajectory of falling mixture sphere without fracturing during the falling process (RF-02-5). 破砕が生じなかった混合試料球体の落石模型による落石軌跡の一例

形態の把握を行った。

3. 実験結果および考察~落石の運動軌跡について~

Table 5に全ケースの落石運動の特徴を示す。また, Photo 8~12にそれぞれの落石模型の代表的な落石軌 跡を示す。これらの写真は高速度ビデオカメラにて 撮影された1/5000秒のムービーファイル(AVI形式) からフリーソフト²⁰⁾を用いて1/250秒間隔の多重露光 写真(ストロボ撮影)にしたものである。なお,全 てのケースにおいて落石の軌道は奥方向に移動して いるが,これは回転場におけるコリオリカの影響に よるものである。

アルミニウム球について,代表的な落石軌跡を Photo 8に示す(ケースRF-01-7)。アルミニウム球は 2ケースとも落下後,回転運動(rolling)のみで落下

- Photo 10 Typical example of simulated trajectory of falling mixture sphere with fracturing during the falling process (RF-01-4).
- 破砕が生じた混合試料球体の落石模型による落石軌跡 の一例

Photo 11 Typical example of simulated trajectory of falling mixture blocks (RF-01-6). 遠心場落石発生装置内で既に破砕していた混合試料 球体の落石模型による落石軌跡

している様子がわかる。また,徐々に速度が増加す る等加速度運動となっていることがわかる。

石膏と豊浦砂の混合試料球の落石軌跡は斜面から 落下する際の破砕の有無で2種類に大別することが できる。Photo 9は落体中に破砕が生じなかった混合 試料球の落石軌跡の一例である(ケースRF-02-5)。 混合試料球を落下させた全9ケース中4ケースがこれ に該当した。破砕が生じなかった混合試料球の落石 軌跡はアルミニウム球と同様に回転運動を中心とし

Photo 12 Simulated trajectory of falling mixture sphere while loading slide door of multiple ball-dropping system (RF-02-4). 混合試料躯体の落石模型による落石軌跡の一例

て落下している。斜面と接した際に微粉砕している が,これは混合試料球作製用モールドの注入口部分 が若干凸凹していたためである。Photo 10は落体中 に破砕が生じた混合試料球の落石軌跡の一例である (ケースRF-01-4)。混合試料球を落下させた全9ケー ス中4ケースがこれに該当した。破砕が生じた混合 試料球の落石軌跡はアルミニウム球や破砕が生じな かった混合試料球の落石軌跡とは大きく異なり,回 転運動から一部分が破砕して飛散している。破砕す る際には回転時の遠心力も付与しており,大きな跳 躍となっている。また剥離した混合球は,その形状 が凸凹となり、隅部を支点として跳躍するため、大 きく跳躍する傾向が見られた。混合試料球の全9ケ ースのうち1ケースは模型落石が遠心場落石発生装 置内で二つに分割し、半球状となった(Photo 11)。 この分割した落石模型は落体中に破砕したケースよ りも跳躍運動が明確に確認することができる。すな わち,半球の球面部分では回転運動をしているが, 平面部分に移行する際にその境界部分を中心として 跳躍運動に移行している様子が確認できる。本ケー スは落体中の落石の破砕による落石運動形態の影響 を確認する本来の目的とは外れているが,落石運動 が落石形状に大きく左右されていることを示す結果 となった。

矩形タイプの混合試料落石模型の軌跡をPhoto 12 に示す。矩形タイプの落石模型は製氷皿を利用して 作製したため台形状となっている。そのため,1回 転した後,接触面積が大きい面が下となり斜面との 摩擦を受けながら滑り落ちていく軌跡を示した。

Hungrらは落石対策に関する報告書¹²の中で落石運動のメカニズムに関して既往の研究をまとめ,Ritche¹³ やEvans²⁷⁾の結果から落石の形状は運動挙動に大きな 影響を及ぼさないとまとめている。一方,日本道路協 会道路土工委員会落石防護施設小委員会が非質点系 の落石シミュレーション手法(個別要素法(DEM),不 連続変形法(DDA))を用いて主要パラメーターの感度 分析を行っている²⁸。その中で落石形状について,短 形から円形に近づくにつれて跳躍高さが小さくなり, 回転運動が卓越する傾向があると述べている。本研 究は落石形状以外のパラメーターについては固定した 状態での実験である。上述の落石形状が異なる実験 の多重露光写真から,落石形状が違うことにより運動 形態が大きく異なっており,落石防護施設小委員会の 結果と同様の傾向を得た。

5. **まとめ**

本研究は,遠心模型実験を用いて破砕を伴いなが ら衝突と跳躍を繰り返す落石現象について物理モデ ル化するために遠心場落石発生装置の開発・試作を 行い,落石現象の運動メカニズムの把握を行った。 本報では落石の破砕の有無や落石形状の違いが落石 軌跡に与える影響について検討を行った。その結果, (1)球形タイプの模型落石は破砕しないケースでは落 石形態は回転運動のみであったが,破砕する場合に は回転運動から跳躍運動に変化する場合も見られ た。また,(2)破砕した破片は大きな跳躍を示した。 矩形タイプの模型落石は運動開始後にわずかに跳 躍・回転運動した後,すべり落ちていくすべり運動 に遷移していた。

今後,落石運動に影響を与える様々なパラメータ ーについても実験を行い,より高精度な落石シミュ レーション手法の開発に努める予定である。特に, 落石が破砕する現象は数値シミュレーションにて表 現できていないので,破砕現象を考慮したシミュレ ーション手法の提案を行う予定である。

謝辞

本研究は,文部科学省科学研究費補助金(萌芽研 究,課題番号16656145,研究代表者:伊藤和也)の 補助を得て実施したものである。ここに記して謝意 を表する。

参考文献

- 1)藤城泰行:落石対策の現状,道路,pp.15-18, 1983.
- 高速道路調査会:落石防護施設の設置に関する 調査研究報告,高速道路調査会,1974.
- 3) (社)日本道路協会:落石対策便覧, 1983.
- 4) (財)鉄道総合技術研究所:落石対策技術マニ ュアル,鉄道総合技術研究所,1999.
- 5) 古賀泰之,伊藤良弘,森下義,鷲田修三,谷口 栄一:落石防災対策に関する調査報告書(その 1),土木研究所資料第2770号,206p,1989.
- 6) 吉田博,荒田久和:マイコンによる落石の飛跡 シミュレーション,第1回落石の衝撃力およびロ ックシェッドの設計に関するシンポジウム論文 集,pp.55-61,1983.
- 7) 右城猛,吉田博,矢野光昭,高石脇,八木則
 夫:斜面を落下する落石の運動定数と跳躍量に
 関する考察,土木学会論文集,No.581/VI,
 Vol.37, pp.380-389,1997.
- Spang, R. M. and Sonser, T.: Opitimized rockfall protection by "ROCKFALL", Proc. 8th ISRM, pp.1233-1242, 1997.
- Stevens, W. D.: RocFall A tool for probabilistic analysis, design of remedial measures and prediction of rockfalls, A thesis submitted in conformity with the requirements for the degree of Master of Applied Science, Univ. of Toronto., 1998.
- 10) 倉岡千郎: DEM (個別要素法) による落石運動 の数値解析, ITASCA Consulting Group, INC. UDEC Version 3.0 Vol. II Appendices, 1998.
- Pfeiffer, T. J. and Bowen, T. D.: Computer simulation of rockfalls. Bulletin of the Association of Engineering Geologists, Vol. 26, No. 1, pp. 135-146, 1989.
- Hungr, O. and S. G. Evans: Engineering aspects of rockfall hazards in Canada, Report to the Geological Survey of Canada and Transport Canada, pp. 20-26, 1989.
- Ritchie, A. M.: Evaluation of rockfall and its control, Highway Research Record, No. 17, pp. 13-28, 1963.
- (社)日本道路協会:落石対策便覧(改訂版), 2000.
- 15)日本道路公団東京支社:落石実験調査報告書, 1973.
- 16) Azzoni, A., Barbera, G. L., and Zaninetti, A.: Analysis and prediction of rockfalls using a

mathematical model. Int. J. Rock. Mech. Min. & Geomech. Abstr., Vol. 32, No. 7, pp. 709-724, 1995.

- Bozzolo, D., and Pamini, R.: Simulation of rock falls down a valley side. Acta Mechanica, Vol. 63, pp. 113-130, 1986.
- 18) Chau, K. T., Wu, J. J. and Wong, R. H. C.: The coefficient of restitution for rocks/boulders falling onto soil slopes with various densities. Proceeding of the Int. Sym. Slope stability Engineering, IS-Shikoku'99, pp. 1355-1360, 1999.
- 19) 一般国道11号落石災害調査委員会:一般国道11 号落石災害調査報告書,1991.
- 20) 右城猛,玉井佐一,明坂宣行,山岡幸弘,八木 則男:高知県における落石災害と落石の運動特 性,土木学会論文集,No.581/VI,Vol.37,pp.39-48,1997.
- 21) 例えば,建設業労働災害防止協会:平成14年度
 版 建設業安全衛生年鑑,建設業労働災害防止
 協会,247p,2002.
- 22) 国土交通省 大臣官房技術調査課:土木・建築 にかかる設計の基本について,http://www. mlit.go.jp /kisha/kisha02/13/131021/131021.pdf
- 23) Horii, N., Itoh, K., Toyosawa, Y., and Tamate, S.:

Development of NIIS Mark-II Geotechnical Centrifuge. The 2nd Int. Conf. Physical Modelling in Geotechnics, 2006 (投稿中).

- 24) Hiramatsu, Y. and Oka, Y.: Determination of the tensile strength of rock by a compression test of an irregular test piece, Int. J. Rock Mech. Min. Sci., Vol. 3, pp. 88-99, 1966.
- 25) Takei, M., Kusakabe, O., and Hayashi, T. : Timedependent behavior of crushable materials in onedimensional compression tests, Soils and Foundations, Vol. 41, No. 1, pp. 97-121, 2001.
- 26) 大久保政俊:ストロボ動画作成ソフトウェア 「どう見る君」, http://www.ricen.pref.hokkaido.jp/
- 27) Evans S. G. and Hungr, O.: Engineering aspects of rockfall hazards in Canada, Report to the Geological Survey of Canada and Transport Canada, 102p., 1989.
- 28) (社)日本道路協会 道路土工委員会 落石防護施 設小委員会:落石対策便覧に関する参考資料-落 石シミュレーション手法の調査研究資料, pp.307-324, 2002.

(平成18年1月11日受理)

抄

静電粉体塗装用塗料の着火性に関する研究(その1)

崔 光石,山隈瑞樹,鄭 載喜 近年、静電粉体塗装は一般の吹付塗装に比べ,生 産効率が高く,環境にやさしいという大きなメリッ トから普及率が極めて高い。しかし,静電粉体塗装 は高電圧印加により塗料を帯電させ,接地した被塗 物に向かって移動させる工程であり,放電による粉 塵爆発・火災の発生が危惧されていることから,粉 体塗料の最小着火エネルギー(MIE)を測定した。測 定には,国内外で標準的に用いられているIEC規格 に準拠した吹上げ方式着火試験装置(ハルトマン式、 MIKE-3)を使用し,着火試験用粉体塗料としては, ポリマーを主成分とする粉体塗料(ポリエステル, エポキシ,ポリエステル/エポキシ,アクリル,ナイロ ン)及び5種類(色別)のポリエステル粉体塗料の計10 種類を用いた。その結果,粉体塗料は数mJの小さい 放電エネルキーでも着火する危険性が明かとなっ た。特に,粉体塗料の粒径を考慮すると、エポキシ 粉体塗料の方が他の粉体塗料に比べて,着火しやす いという結果が得られた。また,粉体塗料に含まれ ている顔料などの成分によっては, MIEはほとんど 変化しないことが明らかになった。

(図5,表2,参考文献19)

噴霧・噴出帯電の静電気危険性評価法の検討

大澤敦

配管やノズルなどから液体が噴出すると液体およ び液滴に静電気が帯電して着火源となることがある ので,各種工程の現場において簡便に噴霧・噴出帯 電の静電気危険性を評価する方法を構築することは 工程の安全化と静電気による着火の防止対策の指針 を与え,安全工学の立場からも重要である。本研究 では噴霧・噴出の静電気危険性を評価するための測 定技術とこの測定データを元に評価する手法を構築 することを目標としている。測定技術として接地円 筒ケージと電界計による空間電荷密度の測定また はフローティングプローブによる電位測定の3つの 方法を検討した。また,評価手法としては,各測定 データを元にポアソンの方程式とE = - Vを用い て噴霧空間の電界強度分布を求め,静電気放電の可 能性を評価する方法を検討した。圧搾空気ドライフ ォグ2流体ノズルを用いた噴霧帯電のモデル実験に より,これらの3つの測定方法を検討して,接地円 筒ケージ・電界計と吸引ファラデーチューブの測定 が妥当な結果を導き,現場で簡便に測定できること を考慮すると接地円筒ケージ・電界計による方法が 適していることを示した。また,静電気放電の可能 性を評価するための簡便なモデルも提案している。 (図7,参考文献4)

破砕を伴う落石現象の物理モデル化に関する研究

伊藤和也,豊澤康男,日下部治 落石は道路,鉄道,住宅等へ影響を及ぼす斜面災 害の中でも発生頻度が比較的高い災害現象の一つで ある。また,落石に起因する労働災害について調査 したところ,過去10年間で40件程度報告されていた。 中には落石が突破・跳躍して落石対策工により保護 されている箇所にいた労働者が被災する事例も報告 されており,落石の運動形態や衝突現象など,落石 対策の計画・設計に必要な事柄についても未だ十分 には解明されていないのが現状である。そこで本研 究は,多くのパラメーターが自明となり,応力条件 を等価にすることが出来る遠心模型実験手法を用 い,破砕を伴いながら衝突と跳躍を繰り返すような 落石現象について物理モデル化を行い,その運動形 態・衝突現象の解明を試みた。本報では,新たに開 発した遠心場落石発生装置の概要と、それを用いて 行った落石実験の落石軌跡および落石の破砕状況を 確認した。その結果,球形タイプの落石形態は回転 運動が主であるが,破砕を伴うと回転運動から跳躍 運動に変化し,破片は大きな跳躍をすることが確認 された。 (図4,表5,写真12,参考文献28)