Study on Ignitability of Coating Powder Used in Electrostatic Powder Coating System
(Part 1)*

by Kwang-Seok CHOI**, Mizuki YAMAGUMA** and Jae-Hee JOUNG***

Abstract; Electrostatic powder coating has been successfully implemented in the painting industry as an environmentally friendly process. However, there have been many accidents involving dust fires and/or explosions in electrostatic powder coating systems using corona discharge. One of the methods for avoiding fires and/or explosions in electrostatic powder coating plants is to investigate the Minimum Ignition Energy (MIE) of coating powders due to the capacitive discharge, such as the electrostatic discharge. This paper reports the experimental results dealing with MIEs of the coating polymer powders (polyester, epoxy, epoxy-polyester co-polymer, nylon, and polyacrylonitrile). The MIEs of five kinds of polyester powders, which were also investigated in this study, differed with respect to pigment type, non-combustible mass fraction, and particle size. The Hartman vertical-tube (1.2 l) apparatus (MIKE-3) was used for the ignitability (MIE) testing of dust clouds. The important results were found as follows: (1) the ignitability of epoxy powder related to the thermal decomposition and surface conditions was higher than that of other powders used in this study, (2) the particle size of coating powders is more important than other factors, such as the pigment type and a non-combustible mass fraction, with regard to their ignitability, (3) some of the sample was so sensitive that even a spark with very low energy, such as 2 mJ, could ignite them. The values of the discharge spark energy of ignition testing set by the BSI standards and the FM regulations related to safety of the electrostatic powder coating system are high enough to result in the ignition of some of the coating powders. Therefore, it is imperative that more appropriate discharge spark energy values in testing be defined for safety assessment in electrostatic powder coating systems.

Keywords; electrostatic discharge, minimum ignition energy, coating polymer powders
静電粉体塗装用塗料の著火性に関する研究（その1）

図1　試験装置の概要

試験装置の概要を図1に示す。試験装置は、静電粉体の著火性を評価するための装置であり、以下の部品から構成されている。

- インサレーター
- 電極
- パウダー分散マッシュケム
- 粉体サンプル
- 压縮空気タンク
- 非再帰値
- ソレノイド操作値
- 壓力低下値

試験装置は、静電粉体の著火性を評価するために使用され、様々な条件を設定して試料を供試し、著火の有無を確認することができる。
Ignition Energy vs. Dust Concentration

- **Epoxy (50: 93 μm)**
- **Polyacrylonitrile (34 μm)**
- **Polyester/Epoxy (33 μm)**
- **Nylon (44 μm)**
- **Polyester (32 μm)**

Table: Specimens

<table>
<thead>
<tr>
<th>Specimens</th>
<th>Color</th>
<th>D_{50} [μm]</th>
<th>MIE* [mJ]</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyester</td>
<td>Black</td>
<td>32.45</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>Epoxy</td>
<td>Black</td>
<td>93.16</td>
<td>24</td>
<td>B</td>
</tr>
<tr>
<td>Epoxy-Polyester</td>
<td>White</td>
<td>31.85</td>
<td>13</td>
<td>A</td>
</tr>
<tr>
<td>co-polymer</td>
<td>White</td>
<td>34</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>Polyacrylonitrile</td>
<td>White</td>
<td>44</td>
<td>35</td>
<td>D</td>
</tr>
</tbody>
</table>

* MIE*: value estimated by the use of the probability of ignition within 10 successive attempts.
図は示されているが、内容が理解できませんでした。
null
静電粉体塗装用塗料の着火性に関する研究（その1）

（平成 年 月 日受理）
抄録

静電粉体塗装用材料の着火性に関する研究（その1）

崔 光石，山根瑞樹，鄭 載喜

近年，静電粉体塗装は一般の吹付塗装に比べ，生産効率が高く，環境にやさしいという大きなメリットから普及率が極めて高い。しかし，静電粉体塗装は高電流圧加により塗料を帯電させ，接地した被塗物に向かって移動させる工程であり，放電による粉塵爆発・火災の発生が危険されていることから，塗料の着火性を評価する方法を研究した。実験には，国内外で標準的に用いられているISO規格に基づき，パルトマン式，NBR方式の着火試験装置を用い，着火試験用粉体塗料として，ポリマーを主成分とする粉体塗料（パロエストール，エポキシ，パロエストールエポキシアクリルサタイロ）及び種類，色別，分散状態の粉体塗料を用い，その結果，粉体塗料は数μgの小さい放電エネルギーでも着火する危険性が明らかとなった。特に，粉体塗料の粒径を考慮すると，エポキシ粉体塗料の方が他の粉体塗料に比べて，着火しやすいという結果が得られた。また，粉体塗料に含まれている顔料などの成分によっては，不燃性はほとんど変化しないことが明らかになった。

（図1，表1，参考文献2）

噴霧・噴出帯電の静電気危険性評価法の検討

大澤 敦

配管やノズルなどから液体が噴出する時，液体および液滴に静電気が帯電し，着火源となることがあるので，各種工事の現場において，簡単な噴霧・噴出帯電の静電気危険性を評価する方法を構築することは，工程の安全化と静電気による火災の防止対策の指針を与え，安全工学の立場からも重要である。本研究では，噴霧・噴出の静電気危険性を評価するための測定技術とその測定データを元に評価する方法を構築することを目標としている。測定技術として，接地円筒ケージと電界計による空間電荷密度の測定，吸引フェーデチューブによる空間電荷密度の測定をフローティングプローブによる電位測定の3つの方法を検討した。また，評価手法としては，各測定デ－タを元にポアソンの方程式とE - Vを用いた着火験の電界強度分布を求め，静電気放電の可能性を評価する方法を検討した。圧縮空気ドライレッド2流体ノズルを用いた噴霧帯電のモデル実験により，これらの3つの測定方法を検討して，接地円筒ケージ・電界計と吸引フェーデチューブの測定が妥当な結果を導き，現場で簡便に測定できることを考慮すると接地円筒ケージ・電界計による方法が適していることを示した。また，静電気放電の可能性を評価するための簡便なモデルも提案している。

（図2，表2，参考文献3）

破砕を伴う落石現象の物理モデル化に関する研究

伊藤和也，豊澤康男，日下部治

落石は道路，鉄道，住宅等に影響を及ぼす斜面災害の中でも発生頻度が比較的高い災害現象の一つである。また，落石に起因する労働災害について調査したところ，過去10年間で10件程度報告されていた。特に，落石が突発的に跳ねて落下対策工により保護されている箇所に起因した労働者が被災する事例も報告されており，落石の運動形態や衝突現象など，落石対策を計画・設計に必要な事柄についても未だ十分に解明されていないのが現状である。そこで本研究では，多くのパラメータが自明となり，応力条件を等価に行うことができる遠心実験手法を用い，破砕を伴いながら衝突と跳ねを繰り返すような落石現象について物理モデル化を行い，その運動形態・衝突現象の解明を試みた。本報では，新たに開発した遠心場落石発生装置の概要を，それを用いて行われた落石実験の落石軌跡および落石の破砕状況を確認した。その結果，形状タイプの落石形態は回転運動が主であるが，破砕を伴う回転運動から跳躍運動に変化し，破片は大きな跳躍をすることが確認された。

（図3，表3，写真3，参考文献3）