Research Reports of the National Institute of Industrial Safety, NIIS-RR-2004 (2005) UDC 537.2:621.319:614.838:621.796.6

空気輸送粉体用自己放電式除電器の開発*

児玉 勉**,山隈瑞樹***,鈴木輝夫****,最上智史****

Development of a Passive-Type Electrostatic Eliminator for Pneumatic Powder Transport*

by Tsutomu Kodama**, Mizuki Yamaguma***, Teruo Suzuki**** and Tomofumi Mogami****

Abstract: In order to prevent a dust explosion caused by electrostatic discharges in a silo during loading of particulate products via a pneumatic transport system, we have developed a novel passivetype electrostatic charge eliminator to reduce the static charge on products before they enter a silo. The eliminator is installed at the end of the loading pipe inside the silo. It consists of a short length of plastic pipe and air-nozzle ionizers without a power supply mounted on it. Each ionizer is equipped with a grounded needle electrode within an insulated nozzle. Instead of a high-voltage power supply, the eliminator utilizes the electrostatic field strength resulting from the electrification of the plastic pipe as the energy source for the corona discharge at the needle electrode to produce air ions for reducing the static charge. The inside wall of the plastic pipe is electrified as particulate products pass through it. The charge elimination performance of the eliminators with plastic pipes of different materials was evaluated using a real-size experimental apparatus and 350-400 kg of polypropylene pellets. The eliminator used in the experiment consisted of a plastic pipe with an inner diameter of 10 cm and a length of 20 cm, as well as six air-nozzle ionizers arranged along the circumference of the plastic pipe. PTFE, PVC, PP, PE, and Nylon were used as the material for the plastic pipe. Two types of ionizers with different nozzles, i.e., insulated metal and PVC, were used. The air ions produced by corona discharges were blown inside the plastic pipe by compressed air at a pressure of 250-300 kPa to neutralize the static charge on the pellets within it. The experimental apparatus consisted of an SUS silo with a diameter of 1.5m and a capacity of $4.8m^3$, an SUS pipeline with a diameter of 10 cm and a length of approximately 20m, an air blower with an air volume of 10 m³/min, and an air conditioning unit. Incendiary discharges, which occurred along the pellet-heap surface in the silo, were observed using a camera/CCD camera with an image intensifier set on the window of the silo roof. The charging tendencies of the pellets before and after elimination were evaluated using two air-blow-type electrostatic field sensors set on each sidewall of the silo and the pipe. It was found that effective elimination was achieved by electrifying the plastic pipe with the same polarity as the pellets and that the pipe was electrified due to the triboelectrification between the pipe and the pellets. The eliminator using PTFE for the pipe material was practically effective for reducing the static charge on the pellets.

Keywords; Static electricity, Electrostatic eliminator, Pneumatic powder transport, Electrostatic discharge, Dust explosion

****物理工学安全研究グループ Physical Engineering Safety Research Group

- 81 -

^{*}WCPT 4 (2002), APSS 2003 (2003), 安全工学研究発表会 (2003) 及び静電気学会全国大会 (2004) で一部口頭発 表

^{**} 産業安全研究所フェロー研究員(シシド静電気株式会社)Fellow Researcher of National Institute of Industrial Safety (Shishido Electrostatic, Ltd.)

^{****} 春日電機株式会社 Kasuga Denki Co. Ltd.

1. 緒言

工場, 事業場ではプラスチック原材料, 化学薬品・ 医薬品中間体・半製品.穀物など多くの原材料・製品 が粉体(粒体を含む)の形で取り扱われ、その移送に は空気輸送がよく用いられる。粉体の空気輸送では、 配管内壁との摩擦等によって抵抗率の高い粉体に多量 の静電気が帯電する。帯電した粉体を空気輸送によっ て貯蔵サイロに充填すると、サイロ内で静電気放電が 発生し、これが爆発限界濃度にある可燃性粉体を着火 させ、粉塵爆発を引き起こす危険性がある1,2)。粉塵爆 発の着火源となり得る静電気放電(以下、着火性放電 という。)としては、雷状放電とバルク表面放電の2 種類が挙げられる^{3,4)}。前者はサイロ内の粉塵雲の規模 及び帯電電荷密度が共に大きくなったときに起こる空 間放電で、後者は粉体の帯電量が極めて高くなったと きに堆積粉体の表面に沿って強い発光を伴って起こる 放電である。粉塵爆発の着火源としてはバルク表面放 電の方が雷状放電よりも有力視されている5-16)。

粉体空気輸送時のサイロにおいて静電気による粉塵 爆発を防止するため、筆者らはサイロ充填パイプの末 端に取り付ける粉体用除電器の開発を行っている。こ れは充填パイプとほぼ同径の短管の外周に数個のエア ノズルイオナイザを取り付けたものである。このイオ ナイザは、ノズル内の針電極(放電針)でコロナ放電 を起こさせ、生成された空気イオンを圧縮空気によっ て吹き出させるもので、このイオンによって短管通過 中の粉体の電荷が中和される。開発中の粉体用除電器 はイオン発生方式の違いによって電圧印加式と自己放 電式に大別することができる。前報17)で報告した電圧 印加式除電器は絶縁された放電針と接地された金属ノ ズル間に交流又は直流の高電圧を印加するものである。 その一般的特性として交流印加では除電不足になりが ちであり、直流印加では細かな除電制御を要するとい う課題がある^{17,18)}。しかしながら、イオナイザを取り 付ける短管としてPVC(ポリ塩化ビニル)を用いると、 交流印加時の除電不足が改善された18)。その原因が短 管の帯電であることは、PVC短管の内面に金属シート を貼り、その印加電圧を変える実験により確認され た19)。一方,自己放電式除電器は高電圧電源を使用せ ず、その代わりに帯電物体の静電エネルギーを利用し て放電針でコロナ放電を起こさせるもので、短管を帯 電させるため絶縁性の短管を使用し, 放電針を接地し た構造のものである。

本研究では,高圧電源を使用しないため安全性及び 経済性に利点を持つ自己放電式粉体用除電器の開発の ため,その構造・材料要件及び除電機構を検討すると ともに,実規模大の粉体空気輸送装置を用いて試作器 の性能評価を行ったので,その結果について報告する。

2. 実験装置及び方法

2.1 自己放電式粉体用除電器

試作した自己放電式粉体用除電器(以下,除電器と いう。)は、Photo 1(上段部分)に外観,Fig.1に構 造を示すように、絶縁性短管(管径 4 in.,長さ20 cm。 以下,絶縁パイプという。)の外周上に6個の小穴を 設け、その各箇所にエアノズルイオナイザ(以下、イ オナイザという。)を取り付けたものである。イオナ イザの取り付けには金属製固定片と金属ネジ(M4× 8mm)を用いた²⁰⁾。イオナイザ内の放電針は火花放電 抑制のため50 MΩの高抵抗を介して接地した。

ノズルは、絶縁された金属製のもの(以下、金属ノ ズルという。)及びPVC製のもの(以下、絶縁ノズル という。)の2種類を用いた。金属ノズルの静電容量 は1.4pFであった。ペレット通過時に帯電物体から静 電誘導を受けて金属ノズルの電圧が2kV以上になる と、放電針で連続的にコロナ放電が発生する²¹⁾。一方、 絶縁ノズルでは、針電極の近傍に導体がないので、帯 電物体による電界が放電針に集中して同様にコロナ放 電が発生する。ノズルには粉体の侵入防止及び絶縁パ イプ内部への空気イオン圧送のため、200~300kPaの 圧縮空気を供給した。

絶縁パイプの素材は、帯電列を考慮してPTFE(テ フロン)、PVC、ナイロン66、PP(ポリプロピレン) 及びPE(ポリエチレン)を用いた²²⁾。ここで、PPと PEの場合は、PVC短管の内面全体に厚さ3mmのシー

Photo 1 Passive-type electrostatic eliminator for powder (upper) and measurement apparatus for field strength on pipe (lower). 自己放電式粉体用除電器(上段)及びパイプ壁電界測定器(下段)

トを貼ったものとした。

2.2 モデル実験装置

イオナイザのコロナ放電特性を調べるため, Fig. 2 に示すモデル実験装置を用いて放電針の放電電流を測 定した。絶縁パイプを模擬するPVC平板(200× 200mm,厚さ3mm)の中央開口部(直径6mm)に 金属ノズルイオナイザを取り付けた。その反対面に中 央部円形(直径26mm)を残して金属シートを貼り付 けた。金属シートには絶縁パイプ内面の帯電を模擬す るため直流高電圧を印加した。金属シート側の前方 30mmに絶縁された金属板(以下,帯電板という。)を 平行に置き,除電対象の帯電物体を模擬するため直流 高電圧を印加した。金属ノズルに誘起される電圧は静

Fig. 2 Schematic diagram of apparatus for model experiment. モデル実験装置

電電圧計で測定した。放電針の放電電流は可動コイル 型の直流電流計で測定した。ノズルには200 kPaの圧 縮空気を供給した。

2.3 粉体空気輸送実験装置及び実験方法

粉体空気輸送実験装置¹⁷⁾の概要を**Fig.3**に示す。実 験ではSUS製円筒型サイロ(直径1.5m,容量4.8m³) に350~400kgのPPペレット(粒径4~5mm)を充 填した後,圧送ブロアを運転し,続いてロータリーバ ルブを稼働させて,ペレットをサイロ底部からSUS製 空気輸送配管(管径4in.,路長約20m)へ導き,再び サイロ上部からサイロ内へ落とし込むという,循環運 転を行った。今回の実験では圧送空気の風量を 10m³/min一定,温度を30℃一定とし,相対湿度及び ペレット流量はそれぞれ30%及び28kg/minを標準とし た。

絶縁パイプに6個のイオナイザを取り付けた除電器 を,Fig.4に示すようにサイロ内充填パイプの末端に 取り付け,除電器オフ(除電前)及び除電器オン(除 電後)の状態で循環運転を行い,この間のサイロ壁電 界(*E*_s),パイプ壁電界(*E*_p),イオナイザ電流(*I*_n), 絶縁パイプ電位,比電荷等の測定及び放電発光観察を 行った。サイロ壁電界は、ペレット堆積面から25~ 40 cm上部のサイロ側壁開口部にエアパージ型電界セ ンサ⁽⁷⁾を取り付けて測定した。パイプ壁電界は、同型 の電界センサを除電器の後に接続した金属パイプ(管 径 4 in.,長さ20 cm。以下,測定パイプという。)の管 壁開口部に取り付けて測定した(Photo 1 の下段)。 イオナイザ電流は、各イオナイザの放電針に接続され

Fig. 3 Schematic diagram of experimental facility for pneumatic powder transport. 粉体空気輸送実験装置の概要

たリード線をコネクタでボンディングし,これとアー ス間にエレクトロメータを接続して測定した。除電器 のオン/オフはこの接続/切り離しによって行った。 絶縁パイプ電位は,イオナイザ取り付け部からパイプ 軸方向上部へ5 cm離れた位置において絶縁パイプ外面 の表面電位を非接触式の電位測定器で測定した。測定 値は絶縁パイプに金属シートを貼り,これに既知電圧 を印加して校正した。

ペレットの単位重量当たりの電荷量すなわち比電荷 は、サイロ内を落下するペレットを絶縁性柄が付いた 金属柄杓(ファラデーペール)を用いて採取し、その 電荷量を重量で除して求めた。なお、空気イオンが柄 杓に付着する場合(量の特定は困難)は、測定値は見 かけの比電荷となるが、帯電の評価としては空気イオ ンの電荷とペレットの電荷を区別する必要がないと想 定して、ここでは単に比電荷と記す。比電荷及び落下 量はサイロの中央、側壁付近、及びその中間位置の3 箇所で測定し、径方向の分布を求めた。

サイロ内の放電発光は、サイロ屋根の覗き窓からイ メージインテンシファイア(浜松ホトニクス製ナイト ビュアC3100,平均ゲイン60,000)付きのビデオカメ ラ又は光学カメラを用いて観測した。

3. 実験結果及び検討

3.1 イオナイザの放電特性

イオナイザ(金属ノズル)の放電特性を調べるため, モデル実験装置(Fig. 2)を用いて,イオナイザ電流 (放電電流)を測定した結果をFig. 5に示す。除電器 の絶縁パイプ内面を模擬する金属シートの印加電圧が

イオナイザ電流に対する帯電板電圧及び金属 シート電圧の影響(符号は全て負)

4 kV(絶対値)以上のとき,イオナイザ電流が連続し て流れ,電流値はこの印加電圧及び帯電ペレットを模 擬する帯電板の印加電圧の両者にほぼ比例して増加し た。電流が流れているときの金属ノズルの電圧は電流 の大きさにかかわらずほぼ一定(-2kV)であった。

このことから以下のことが推測される。すなわち, 絶縁パイプの内面が連続的に負極性で絶対値が数kV以 上に帯電すると,静電誘導によって金属ノズルの電圧 が上昇し,-2kVに達すると,接地された放電針でコ ロナ放電が発生する。一旦コロナ放電が開始すると, 空気イオンによって絶縁パイプと金属ノズル間に導電 性が付与され,絶縁パイプから金属ノズルの電価が供 給される。その結果,金属ノズルの電圧が放電電圧 (約-2kV)に維持され,コロナ放電が持続する。ま た,粉体空気輸送実験によると,ペレットの帯電に比 例して絶縁パイプの帯電も大きくなる傾向があるので, ペレットの帯電に応じて除電能力も高まる。

3.2 除電器の性能評価

粉体空気輸送実験装置を用いて試作除電器の性能評 価を行った結果を以下に示す。

3.2.1 絶縁パイプ材質の影響

イオナイザの放電特性から除電器の除電性能には絶 縁パイプの帯電が影響することが示されたので,絶縁 パイプの材質(ナイロン, PE, PP, PVC, PTFE)を 変えてその影響を調べた。なお,ペレット帯電量に関 する測定値(電界強度,イオナイザ電流,パイプ電位, 比電荷等)は空気輸送開始後及び運転条件変更(除電 器のオン・オフ,ペレット流量,相対湿度)時に時間

変化し、定常に達するまで通常10分程度の時間を要し た。以下に検討する測定値は特に断らない限りほぼ定 常に達した値(飽和値)である。ペレット流量を変化 させたときの除電前及び除電後のサイロ壁電界E。の測 定結果をFig.6に示す。除電前のペレットの帯電は主 としてSUS配管との摩擦によって起こるので、除電器 を停止した場合は、E_sは絶縁パイプの材質に依存せず ほぼ一定となった。図には除電前の値として5種類の 絶縁パイプの平均値を示す。3.2.2 で詳述するように、 この実験条件では着火性放電であるバルク表面放電は Esが負極性で絶対値が2kV/cm以上のとき発生した。 除電器を使用しないとき E_s は-4kV/cmに達し、肉眼 で観察できるほどのバルク表面放電の発光17)(以下, 放電発光という。)が頻繁に発生した。ナイロン, PE, PPでは除電器を作動させてもE_sの絶対値が2kV/cm以 下に下がらず,放電発光も消滅しなかった。一方, PTFEとPVCの場合は除電開始とほぼ同時に放電発光 は消滅し、以降E_sが正極性に転じても再び現れること はなかった。除電により帯電極性が反転することを逆 帯電(3.2.2参照)という。

Fig. 6を得た同じ実験で、パイプ壁電界 E_p を測定した結果を**Fig. 7**に示す。この結果でもPVCとPTFEでは優れた除電効果を示したほか、 E_s のような逆帯電はほとんど現れなかった。

*E*_pは,電荷分布が均一であればガウスの定理より近 似的に次式で表される。

$$E_{\rm p} = \frac{rq}{2\varepsilon_0} \tag{1}$$

ここで, *r*:測定パイプ内半径 (=54 mm), *q*:測 定パイプ内空間電荷密度, *ε*₀:真空の誘電率

Fig. 7 Effect of pellet flow rate on field strength at pipe wall before and after elimination for eliminators with various pipe materials. 各種パイプ材質の除電器における除電前後の パイプ壁電界とペレット流量の関係

 $(=8.854 \times 10^{-12} \text{F/m})$

qは次式で表される。

$$q = \rho \frac{W}{F} \tag{2}$$

ここで, ρ:比電荷, F:風量(=10 m³/min), W: ペレット流量

(1)及び(2)式より ρ は次式で表される。

$$\rho = \frac{2\varepsilon_0 F}{rW} E_p \tag{3}$$

除電性能を評価する尺度として除電率 η (%)を次 式で定義した。

$$\eta = \frac{|E_{\rm p0}| - |E_{\rm p1}|}{|E_{\rm p0}|} \times 100 \tag{4}$$

ここで, *E*_{p0}及び*E*_{p1}:除電前及び除電後のパイプ壁 電界

除電率をFig. 8 に示す。PTFEとPVCではペレット 流量にかかわらずほぼ100%の除電率を示した。PPで はペレット流量が低い場合に除電率が低下し,PEとナ イロンではペレット流量にかかわりなく極めて低い値 を示した。

この実験におけるイオナイザ電流,除電前及び除電 後の絶縁パイプ電位をFig.9に示す。PPの結果は絶 縁パイプ電位の測定に不備があったため省いた。イオ

各種パイプ材質の除電器における除電率とペレット流量の関係

Fig. 9 Ionizer current and pipe potentials before and after elimination for eliminators with various pipe materials.
各種パイプ材質の除電器におけるイオナイザ
電流及び除電前後のパイプ電位

ナイザ電流は各放電針のコロナ電流の総和に等しいの で,その大きさ及び極性が除電特性に直接関係する。 特に極性は重要であり、ペレットの帯電と同極性でな いと除電できない。測定結果を見ると、除電率が高い PTFEとPVCのイオナイザ電流はペレットの帯電と同 極性であり、同じ同極性であっても除電率の低いPEに 比べて電流値は著しく大きい。除電率が極めて低いナ イロンでは極性が異なる。イオナイザ電流は除電前の 絶縁パイプ電位の大きさ及び極性と相関があることか ら、イオナイザ電流は主としてペレット通過時の絶縁 パイプの帯電によってもたらされている。絶縁パイプ の帯電傾向は帯電列²³⁾とほぼ一致し、負極性側から PTFE, PVC, PP, PE,ナイロンの順となる。すなわ ち、絶縁パイプの帯電機構は摩擦帯電である。

PTFEパイプを使用する除電器は最も安定した除電 性能を示したので、以下の検討はこれによって行う。

3.2.2 除電効果の検討

PTFE製の絶縁パイプに金属ノズルイオナイザを取 り付けた除電器を用いて,除電器オフの状態でしばら

びイオナイザ電流の時間変化

く循環運転を行った後に除電器オンに切り替えたとき のサイロ壁電界 (E_s),パイプ壁電界 (E_p)及びイオ ナイザ電流 (I_n)の時間変化の一例を**Fig.10**に示す。 除電を開始すると, I_n が瞬時に -4μ Aに立ち上がり, E_p は-1kV/cmからほぼ0kV/cmへ低減した。一方, $<math>E_s$ は除電前では-4kV/cmに達したが,除電を続ける と,徐々に正極性方向へ移行し,数分後には飽和値 の+2.5kV/cmに達した。

バルク表面放電の発生は堆積したペレットの帯電量 に依存するので、その発生条件はEsと相関がある。今 回の実験条件では負極性で絶対値が2kV/cm以上のと き放電発光が観測された。放電発光は除電開始とほぼ 同時に消滅し、Esが正の飽和値に達しても再び現れる ことはなかった。

除電後にE_sが+2.5 kV/cmに達したことから、ペレッ トの一部が逆帯電したことは明らかであるが、除電に より平均帯電量が低減し、バルク表面放電が発生しな かったものと推測される。これを確認するため、サイ ロ内を落下するペレットの比電荷及び落下量のサイロ 径方向分布を測定した。除電前及び除電後の比電荷の 分布をFig.11に示す。除電後には逆帯電レベルの高い 一部のペレットがクーロン力により側壁方向へ放射状 に広がるため、側壁近くの比電荷は+4.2 µ C/kgと大 きくなった。これによりサイロ壁電界が+2.5 kV/cm にも達したことが説明できる。しかしながら、ペレッ ト落下量の分布をFig.12に示すように、側壁近くの落 下量は中央付近の100分の1程度に過ぎなかった。サ イロ中央付近に落下する大部分のペレットの比電荷は, 除電前の-7.8 µ C/kgに対して除電後には+0.24 µ C/kg となり、絶対値が約3%に低減した。これによりバル ク表面放電の発生が抑制されたことが裏付けられる。

Fig. 11 Horizontal distribution of specific charge of falling pellets before and after elimination. 除電前後の落下ペレット比電荷のサイロ径 方向分布

Fig. 12 Horizontal distribution of sampling rate of falling pellets before and after elimination. 除電前後のペレット落下量のサイロ径方向 分布

ペレット流量を変化させたときの除電前及び除電後 の E_s 及び E_p の測定結果を**Fig.13**に示す。この流量範囲 では、 E_s は除電前の $-3.7 \sim -3.2$ kV/cmから除電後に は逆帯電により $+2.4 \sim +1.3$ kV/cmとなるが、 E_p は-0.88 ~ -1.4 kV/cmから $-0.001 \sim 0.01$ kV/cmに低減し た。

先に求めた(3)式にペレット流量W=28.3 kg/min, 除電前のパイプ壁電界実測値 E_{p0} = -0.88 kV/cmを適用 して比電荷を求めると - 10.2 μ C/kgとなる。これは上 述のサイロ中央における比電荷の実測値 - 7.8 μ C/kgよ りわずかに大きい値である。この違いは、測定パイプ 内及びサイロ内のペレットの帯電分布がどちらも均一 でないことと測定のバラツキによると考えられる。し かしながら、パイプ壁電界とサイロ中央部の比電荷に はほぼ比例関係が認められた(Fig.17参照)ことか ら、除電率により除電性能を評価することは妥当であ る。Fig.13から算出した除電率はペレット流量に依ら ず99~100%を示した。

圧送空気の相対湿度を変化させたときのE_s及びE_pの

Fig. 13 Effect of pellet flow rate on field strength at silo wall and pipe wall before and after elimination.

除電前後のサイロ壁電界及びパイプ壁電界 とペレット流量の関係

測定結果をFig.14に示す。絶縁パイプが吸湿性の小さ いPTFEであったため,相対湿度30~70%の範囲では 湿度の影響を受けず,除電率は99~100%を示した。

3.2.3 イオナイザ本数の影響

これまでの検討ではイオナイザの本数が6本であっ たが、PTFEパイプでは逆帯電が観察された。そこで、 イオナイザの本数を変えてその影響を調べた。その結 果をFig.15に示す。図に示すように、イオナイザ本数 1本でもE_sがかなり低下し、2本以上では逆帯電が起 こった。一方、E_pからはイオナイザ1本では除電不 足、2本以上で十分な除電効果が確認された。

除電器では帯電ペレットの流入に伴う流動電流がイ オナイザ電流としてアースへ流れることによって除電 が行われる。ここで,流動電流*I*₆は次式で表される。

Fig. 15 Effect of number of ionizers on field strength at silo-wall, pipe-wall and ionizer current under eliminator with metal nozzle ionizer.
金属ノズル除電器におけるサイロ壁電界,パイプ壁電界及びイオナイザ電流とイオナ イザ本数の関係

$$I_{\rm s} = \rho \, V_{\rm p} \tag{5}$$

ここで、 ρ :比電荷、 V_p :ペレット流量

ペレット流量が28.3 kg/minのときのサイロ中央部の 比電荷測定値 – 7.8 μ C/kgを(5)式に適用すると,流動 電流は – 3.7 μ Aとなる。Fig.15からイオナイザ1本の イオナイザ電流は – 2.8 μ Aであるので,これが1本当 たりの最大放電電流(除電イオン供給能力)と見なさ れる。したがって,イオナイザ1本では除電不足であ り,放電能力が高まる2本以上で,ほぼ100%除電可 能となる。自己放電式除電器では物体の帯電を利用し てコロナ放電を起こさせるので,イオナイザ電流が飽 和傾向を示すものと推測される。

3.2.4 ノズル種類の影響

これまでは金属ノズルイオナイザを用いた除電器に ついて検討したが、ここではより簡単な構造を持つ絶 縁ノズルイオナイザを使用する除電器について検討す る。両者の除電性能を比較するため、同じPTFEパイ プに金属ノズルイオナイザ又は絶縁ノズルイオナイザ を取り付けて、各イオナイザの本数の影響を調べた。 イオナイザ本数とパイプ壁電界との関係をFig.16に示 す。この実験ではペレット比電荷の測定も併せて行っ たので、パイプ壁電界と比電荷の関係をFig.17に示 す。逆帯電の箇所を除いて、パイプ壁電界と比電荷は ほぼ比例関係であることが示された。両者除電器はほ とんど同じ除電特性を示したことから、両者イオナイ ザの放電特性に本質的な違いがないことが示唆された。

界とイオナイザ本数の関係

異なるノズルの除電器におけるパイプ壁電 界とペレット比電荷の関係

4. 除電機構の考察

実験結果をもとに、PTFEを絶縁パイプとする除電 器による除電機構を検討すると次のようになる。SUS 配管と摩擦したPPペレットはPPの方がSUSより帯電列 の負側にあるので負に帯電する。ペレットと摩擦した PTFEパイプは、PTFEの方がPPよりさらに負側にあ るので同じく負に帯電する。負に帯電したPTFEパイ プから電界を受けてイオナイザの放電針(接地)で連 続的に正コロナ放電が生じる。これにより生成された 正イオンがPTFEパイプ内に吹き込まれて、ペレット の負電荷が中和される。PTFEパイプとの摩擦により ペレットの一部が正に帯電(逆帯電)する。また、イ オナイザによる正イオン供給量がペレットの帯電量よ り勝る場合は正の過剰イオンとなり、これも逆帯電の 原因となる。しかしながら、逆帯電のペレット量は全 体に比べると少ない。この除電機構では、ペレットの 帯電もPTFEパイプの帯電も摩擦帯電であるので、ペ レットの帯電が大きいほど、イオン生成量も多くなる ような除電の自己調整作用が働くと推測される。同様 に逆帯電の大きさも制限される。

一般には、粉粒体との摩擦によって元々の粉粒体の 電荷と同極性に帯電する絶縁パイプを選択すれば除電 が可能となる。例えば、配管との摩擦により負極性に 帯電する粉粒体に対しては、帯電列の負極性エンドに 近いPTFEパイプを用いることにより有効な除電が行 われる。なお、帯電列がPTFEと近いPVCパイプの場 合は、内面にPPペレットの溶融膜が生じ、除電特性が 低下する現象が起こった。

5. 結論

粉体空気輸送によるサイロ充填時の粉体帯電防止, 特に着火性放電の抑制を目的として,絶縁パイプの周 囲にエアノズルイオナイザを取り付けた自己放電式粉 体用除電器を開発し,実規模実験によって除電機構及 び除電性能を検討した。その結果,粉体との摩擦によ って粉体が元々持っていた電荷と同極性に帯電する絶 縁パイプを選択すれば有効な除電が可能であること, また絶縁パイプの帯電機構は粉体との摩擦帯電である ことが判明した。

一例として、負極性の帯電列エンドに近いPTFEパ イプを使用する除電器は、金属配管輸送によって負極 性に帯電するPPペレットに対して安定した除電性能を 示した。この除電器は、金属配管との摩擦で同じく負 の帯電傾向を示す他の高分子樹脂など多くの粉粒体に 対して適用が期待できる。

謝辞

本研究に関して大阪府立大学 綿野 哲 助教授には 種々の助言をいただいた。この場を借りて謝意を表し ます。

参考文献

- 1) 静電気学会編,新版静電気ハンドブック, pp.150-364, オーム社 (1998).
- 2) 産業安全研究所技術指針,静電気安全指針,RIIS-TR-87-1 (1988).
- M.Glor, Electrostatic Hazards in Powder Handling, pp.59-102, Research Studies Press (1988).
- 4) T.B.Jones and J.L.King, Powder Handling and

Electrostatics, pp.4-24, Lewis Publishers (1991).

- B. Maurer, "Discharges due to electrostatic charging of particles in large storage silos," Ger. Chem. Engrg., 2, pp.189-195 (1979).
- R. Blythe and W. Reddish, "Charging on powders and bulking effects," Institute of Physics Conf. Ser. No. 48, pp.107-114 (1979).
- M. Glor, Proceedings of Int. Conference on Safe Handling of Flammable Dusts, organized by VDI, Nürnberg, VDI-Berichte, 494, p.119 (1983).
- M. Glor, "Condition for the appearance of discharges from the gravitational compaction of powders," J. Electrostatics, 15, pp.223-235 (1984).
- M. Glor, "Hazards due to electrostatic charging of powders," J. Electrostatics, 16, pp.175-191 (1985).
- M. Glor, Electrostatic hazards in powder handling, Research Studies Press, Letchworth, pp.93-102 (1988).
- G. Lüttgens and M. Glor, Understanding and controlling static electricity, Expert Verlag GmbH (1989).
- 12) B. Maurer, M. Glor, G. Lüttgens, and L. Post, "Test rig for reproducible generation of discharges from bulked polymeric granules," J.Electrostatics, 23, pp.25-34 (1989).
- 13) M. Glor, G. Lüttgens, B. Maurer, and L. Post, "Discharges from bulked polymeric granules during the filling of silos-characterization by measurements and influencing factors," J. Electrostatics, 23, pp. 35-43 (1989).
- 14) M. Glor and B. Maurer, "Ignition tests with discharges from bulked polymeric granules in silos (cone discharges)," J. Electrostatics, 30, pp.123-134 (1993).
- 15) M. Glor, Proceedings of eighth Int. Symposium on Loss Prevention and Safety Promotion in the Process Industries, Antwerp, Elsevier Science Publishers, Amsterdam (1995).
- 16) M. Glor and K. Schwenzfeuer, "Occurrence of cone discharges in production silos," J. Electrostatics, 40&41, pp.511-516 (1997).
- 17) 児玉勉,鈴木輝夫,最上智史,粉体用除電器によるサイロ内着火性放電の抑制,産業安全研究所研 究報告,NIIS-RR-2003, pp.95-107 (2004).
- 18) T. Kodama, T. Suzuki, K. Nishimura, S. Yagi

and S. Watano, "Prevention of Incendiary Discharge in a Silo by Using a Newly Developed Electrostatic Eliminator," Conf. Record (CD) of 2000 IEEE/IAS Annual Meeting, Rome (2000).

- 19) T. Kodama, T. Suzuki, K. Nishimura, S. Yagi, and S. Watano, "Static charge elimination on pellets in a silo using a new nozzle-type eliminator," J. Electrostatics, 55, pp.289-297 (2002).
- 20) T. Kodama, T. Suzuki, T. Mogami, and S. Watano, "A new passive-type elec-trostatic eliminator used in a powder storage silo," Powder Technology, 135-136, pp. 209-215 (2003).
- 21) T. Kodama, T. Suzuki, T. Mogami, and S. Watano, "A new nozzle-type static charge eliminator used in a silo during pneumatic powder transport," Conf. Record (CD) of World Congress on Particle Technology 4, Sydney (2002).
- 22) T. Kodama, T. Suzuki, T. Mogami, and S. Watano, "Electrostatic charge elim-ination on powder by nozzle-type ionizers," Proceedings of Asia Pacific Symposium on Safety (APSS 2003), pp.363-366, Taipei (2003).
- 23) 静電気学会編,新版静電気ハンドブック, p.1027, オーム社 (1998).

(平成17年1月19日受理)