
Introduction

Epidemiological studies conducted in the past few de-

cades have provided evidence that night work is associated 
with risks of health problems including sleep disorder, car-
diovascular disease, diabetes, obesity, depression, and 
cancer1, 2). Melatonin suppression caused by light exposure 
during night work together with chronic circadian mis-
alignment has been thought to be partially responsible for 
those health problems3, 4). Melatonin is a hormone released 
from the pineal gland solely during the night; it contributes 
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melatonin level, subjective sleepiness, and vigilance per-
formance during simulated night work.

Materials and Methods

Subjects
Eleven healthy university male students (mean ± SD age: 

22.2 ± 4.1 years) participated in this study. None of the par-
ticipants showed extreme morningness or extreme evening-
ness as assessed by a Japanese version of the Morning-
ness-Eveningness Questionnaire. Subjects who had 
engaged in night work or who had experienced time zone 
travel in the previous one month or who had ever taken 
sleeping pills and tranquilizers were excluded from this 
study. All of the participants were non-smokers. Signed 
written informed consent, which was approved by the Eth-
ical Committee of Kyushu University, was obtained from 
all participants. The experiments were conducted in accor-
dance with the Declaration of Helsinki.

Experimental conditions and procedures
All of the subjects participated in two experimental con-

ditions with a counterbalanced crossover design, including 
nap vs. no nap conditions. A wash-out period of 1 week was 
interposed between the conditions. Two chambers were 
prepared: chamber 1 for simulated night work and chamber 
2 for a nap break or sleep. The temperature and relative 
humidity of both chambers were maintained at 25 degrees 
and 50%, respectively.

Each experimental condition was conducted for two con-
secutive nights. Prior to each experiment, the subjects were 
instructed to go to bed between 23:00 and 01:00 h and wake 
up between 07:00 and 09:00 h for one week. Wrist actigra-
phy with tri-axial accelerometers (MotionWatch 8, CamN-
tech Inc., UK) and a daily sleep diary were used to confirm 
sleep control implementation. Fig. 1 shows the details of 
the experimental protocols. The subjects arrived at our ex-
perimental facility at about 20:00 h and changed into com-
fortable clothes (their own home wear). After receiving 
brief instructions for the experiment, the subjects spent 
time in a dimly lit room (<15 lx, chamber 1) in a sitting 
position from 21:00 to 01:00 h. During this period, reading 
a book or using portable devices, including laptops, tablet 
pc, and smartphones, were allowed. The illuminance of the 
portable devices was always set to minimum brightness 
when the room light was adjusted to dim light (i.e., <5 lx as 
measured at a distance of 20 cm from the center of each 
screen). Subsequently, the subjects slept in darkness (cham-
ber 2) from 01:00 to 09:00 h. Salivary samples were col-

to internal biological rhythm regulation. Also, melatonin is 
known to have an antioxidant function, and it has been in-
vestigated as a promising hormone for cancer prevention 
and treatment5). 

Exposure to light at night can immediately inhibit pineal 
melatonin synthesis, and its inhibition continues as long as 
the light exposure continues. Melatonin suppression in re-
sponse to light depends on the light intensity6), spectral 
composition7), and exposure duration8). Its suppression is 
strong in response to blue-enriched (more short-wavelength 
components) white light with a high intensity. The most 
effective way to prevent melatonin suppression during 
night work may therefore be to reduce the intensity of light 
and short-wavelength light as much as possible9, 10). How-
ever, bright and/or blue-enriched lighting is desirable for 
providing night workers with good visibility and alert-
ness11). 

Many shift workers take an afternoon or evening nap, 
also known as a prophylactic nap, before starting night 
work to prevent occupational errors and accidents caused 
by severe sleepiness, reduced alertness, and fatigue. How-
ever, it is not easy to fall asleep in the early evening since 
the internal biological clock mediating physiological func-
tions is not ready to sleep. On the other hand, taking a 
nighttime nap during night shift has also been suggested to 
relieve sleep pressure and recover alertness and perfor-
mance losses12). 

The effects of nighttime naps ranging from a short dura-
tion (15 min) to a long duration (120 min) at different tim-
ings have been investigated in previous studies13), but the 
optimal timing and duration of a nighttime nap are still con-
troversial. In Japan, the Japanese Nursing Association rec-
ommends a nap of more than two hours if the night shift 
starts after 22:00 h and the working time exceeds eight 
hours. Considering that the first sleep cycle between non-
REM sleep and REM sleep generally takes 1–2 hours, a 
nighttime nap for 120 min could be useful for sleep quality. 
Indeed, some previous studies have shown that a 120-min 
nap is superior to a 60-min nap in terms of sleep quality and 
performance14, 15). 

As an additional potential benefit of a scheduled nap for 
a relatively long duration, it is expected that a nap can mit-
igate melatonin suppression during night work16). It is hy-
pothesized that napping in darkness could promote mela-
tonin secretion by blocking light input to the retina. 
However, to our knowledge, this potential effect has not 
been investigated so far, and it is unclear how much pineal 
melatonin recovers during a nap break in night work. In the 
present study, we investigated the effects of a nap break on 
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Sample analysis
Salivary melatonin concentration was determined using 

a radioimmunoassay (RK-DSM; Buhlmann Laboratories 
AG, Allschwil, Switzerland). Melatonin area under the 
curve (AUC) for the samples obtained between 21:00 and 
09:00 h was calculated using the trapezoid method. In the 
PVT analysis, mean reciprocal reaction time (1/RT: reac-
tion velocity) and 10% fastest reaction time (i.e., optimal 
alertness) were considered as dependent variables. Reac-
tion time slower than 500 ms was counted as a lapse. 

 
Statistical analysis

All of the results are presented as means ± standard error. 
SPSS 23.0 ((IBM©️ SPSS©️ Statistics) was used for all sta-
tistical analyses. In the statistical comparison of melatonin 
profiles between day 1 (baseline) and day 2 (simulated 
night work) or between nap and no nap conditions, repeat-
ed measures two-way ANOVA was performed separately in 
each experimental condition. Greenhouse-Geisser correc-
tion was performed when Mauchily’s sphericity assump-
tion was largely violated. Comparisons of melatonin con-
centrations at each time point and melatonin AUCs between 
day 1 (baseline) and day 2 (simulated night work) were 
performed using a two-sided, paired Student’s t-test. Given 
that melatonin concentration could differ depending on the 
circadian rhythm, light exposure history, and food intake 
even in the same individual17, 18), the amount of melatonin 
changes based on the melatonin concentration at 03:00 h 
(i.e., just before the nap intervention) were compared. Also, 
multiple comparisons with Holm correction were per-
formed for the data obtained between 03:00 and 09:00 h.

lected at 2-h intervals using a plain cotton plug (Salivette 
Sarstedt, Germany) from 21:00 to 09:00 h. When collecting 
salivary samples during the sleep period, the subjects were 
woken and instructed to raise their upper body.

On the next morning, the subjects moved into chamber 1 
and had free time from 09:00 to 21:00 h. The illuminance 
was set to dim light (<15 lx) between 09:00 and 11:00 h and 
changed to light of medium intensity (~200 lx, 4,200 K, 
fluorescent light) between 11:00 and 21:00 h. The subjects 
were not allowed to leave the room (i.e., chamber 1) except 
for using the toilet. During the free time session, the sub-
jects spent time reading a book or using portable devices. 
The subjects performed simulated night work under expo-
sure to medium intensity light (~500 lx, 4,200 K, fluores-
cent light) from 21:00 to 09:00 h. During the simulated 
night work, participants were allowed to use a laptop to 
write documents and collect information via the internet 
except when conducting experimental tasks, including col-
lecting salivary samples, PVT, and subjective sleepiness 
ratings. Also, the participants were instructed to stop all ac-
tions and rinse their mouths 15 minutes before saliva col-
lection. Subjects with a nap condition took a nap for 2 hours 
in a dark room (i.e., chamber 2) from 03:00 h, while sub-
jects with no nap condition continued the simulated night 
work. Salivary sample collection, sleepiness assessment 
(Stanford sleepiness scale: SSS), and a psychomotor vigi-
lance test (PVT) were conducted at 2-h intervals from 
21:00 to 09:00 h. Meals were provided four times at 09:15 
(breakfast), 13:00 (lunch), 20:00 (supper), and 02:00 h (late 
night meal).
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Fig. 1. Experimental protocol with two conditions (nap vs. no nap) with a crossover design, showing light conditions, mealtime, and 
measurement timing. A one-week of wash-out period was interposed between the conditions.

21 1 2 3 4 5 6 7 8 9 1122 23 24 21

Wake (< 15 lx) Sleep (darkness) Wake
(<15 lx)

Wake (~200 lx)

Night work (~500 lx)

Night work (~500 lx) Nap
(darkness)

Night work (~500 lx)

Day 1

Day 2

21 1 2 3 4 5 6 7 8 922 23 24

13 20

Meal (9:15) Meal Meal

Meal

No nap condition

Nap condition

Saliva samples

Saliva samples

PVT and SSS

(h)

(h)

Figure 1

(Baseline)

(Simulated night work)

Figure 1. Experimental protocol with two conditions (nap vs. no nap) with a crossover design, showing light
conditions, mealtime, and measurement timing. A one-week of wash-out period was interposed between the
conditions.



point showed that light exposure during simulated night 
work significantly suppressed melatonin compared to the 
baseline concentration at 03:00, 07:00, and 09:00 h 
(p<0.001, p=0.002, and p=0.006, respectively) but not at 
05:00 h (i.e., shortly after the nap break) (p=0.197). 

In the no nap condition (Fig. 2B), repeated-measures 
two-way ANOVA with day (baseline vs. simulated night 
work) and time (03:00 ~ 09:00 h) showed a main effect in 
day (F1, 8=8.254, p=0.021) but not in time (F1.327, 10.613=2.087, 
p=0.177; Greenhouse-Geisser corrected). There was no 
significant interaction between day and time (F1.610, 

12.876=0.065, p=0.904; Greenhouse-Geisser corrected). A 
paired t-test for melatonin concentrations at each time point 
showed that melatonin levels during simulated night work 
were significantly lower than those during baseline at 03:00 
and 05:00 h (p=0.035 and p=0.042, respectively). Besides, 
there was a significant tendency for a lower melatonin con-
centration during the simulated night work than at baseline 
at 07:00 (p=0.062). There was no significant difference in 
melatonin concentration between baseline and simulated 
night work at 09:00 h (p=0.135). 

Multiple comparisons with Holm correction among the 
time points (03:00 ~ 09:00 h) in each condition (i.e., nap 
and no nap conditions) were also performed. In the nap 

In statistical comparisons between the nap conditions 
(i.e., nap vs. no nap) for subjective sleepiness (SSS), and 
performance (PVT reaction time), repeated-measures two-
way ANOVA was conducted. A two-sided, paired Student’s 
t-test was used for planned comparisons between the condi-
tions (i.e., nap vs. no nap). The Wilcoxon matched-pairs 
signed-rank test was conducted to compare the numbers of 
lapses (i.e., nap vs. no nap) at each corresponding measure-
ment time. A p-value of less than 0.05 was considered sta-
tistically significant. A p-value of less than 0.1 and greater 
than 0.05 was considered a significant tendency.

Results

Melatonin suppression
Fig. 2 shows the average and individual melatonin pro-

files in each experimental condition. In the nap condition 
(Fig. 2A), repeated-measures two-way ANOVA with day 
(baseline vs. simulated night work) and time (03:00 ~ 09:00 
h) showed main effects in day (F1, 8=29.650, p=0.001) and 
time (F3, 24=10.919, p<0.001). A significant interaction be-
tween day and time was found (F3, 24=3.968, p=0.020). A 
paired t-test for melatonin concentrations between day 1 
(baseline) and day 2 (simulated night work) at each time 
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Fig. 2. Comparison of salivary melatonin concentrations between the baseline day and the simulated night work (A and B) and 
individual melatonin profiles in each night work condition (C and D). Comparisons of melatonin concentrations (E) and melatonin 
changes (F) between nap and no nap conditions. **: p<0.01, *:p<0.05, +:p<0.1
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Fig. 2. Comparison of salivary melatonin concentrations between the baseline day and the simulated night work (A 
and B) and individual melatonin profiles in each night work condition (C and D). Comparisons of melatonin 
concentrations (E) and melatonin changes (F) between nap and no nap conditions. **: p < 0.01, *:p < 0.05, +:p < 0.1



p=0.507, respectively).
Fig. 3 shows the melatonin AUCs in each experimental 

condition. Repeated-measures ANOVA with condition (nap 
vs.no nap) and day (baseline vs. simulated night work) 
showed a main effect in day (F1, 8=32.233, p<0.001). How-
ever, there were no main effect in condition (F1, 8=0.173, 
p=0.688) and no significant interaction between condition 
and day (F1, 8=0.537, p=0.485). A paired t-test was per-
formed to compare melatonin AUCs between baseline and 
simulated night work in each experimental condition. In the 
nap condition, the melatonin AUC on day 2 (simulated 
night work) was significantly lower than that on day 1 
(baseline) (p<0.001). In the no nap condition, the melatonin 
AUC on day 2 (simulated night work) was significantly 
lower than that on day 1 (baseline) (p=0.010). The percent-
age of melatonin AUC suppression in each condition was 
calculated based on the melatonin AUC on the baseline day 
and compared between the conditions (i.e., nap vs. no nap). 
There was no statistical difference (p=0.186, paired t-test). 

PVT
The results for mean reciprocal response time (1/RT), 

10% fastest response time, and lapses are shown in Fig. 4. 
In ANOVA for mean 1/RT, there were no significant main 
effects in condition (nap vs. no nap; F1, 8=2.702, p=0.139) 
and time (03:00 ~ 09:00 h; F1.392, 11.140=2.107, p=0.173; 
Greenhouse-Geisser corrected). However, an interaction 
between condition and time was found (F1.404, 11.229=4.838, 
p=0.040; Greenhouse-Geisser corrected). Similar results 
were obtained in ANOVA for 10% fastest response time: no 
main effects in condition (nap vs. no nap; F1, 8=1.202, 
p=0.305) and time (03:00 ~ 09:00 h; F1.833, 14.664=2.269, 
p=0.141) but an interaction between condition and time (F3, 

24=7.636, p=0.001). 
In the comparison of mean 1/RT (response speed) at each 

condition, melatonin concentration at 05:00 h was signifi-
cantly greater than the concentrations at 03:00, 07:00, and 
09:00 h (p=0.038, p=0.027, and p=0.006, respectively). In 
the no nap condition, however, there was no significant dif-
ference in melatonin concentrations among the time points.

In the direct comparison of melatonin profiles between 
nap and no nap conditions (Fig. 2E), repeated-measures 
ANOVA with condition (nap vs. no nap) and time (03:00 ~ 
09:00 h) showed a main effect in time (F3, 24=8.935, 
p<0.001) but not in condition (F1, 8=1.577, p=0.245). A sig-
nificant interaction between condition and time was found 
(F3, 24=4.639, p=0.011). A paired t-test for melatonin con-
centrations at each time point showed that melatonin level 
at 03:00 h (i.e., before the nap intervention) was signifi-
cantly higher in no nap condition than in nap condition 
(p=0.042). There was a significant tendency for a higher 
melatonin concentration in the no nap condition than in the 
nap condition at 09:00 h (p=0.055). However, there were 
no significant differences in melatonin levels between the 
nap and no nap conditions at 05:00 and 07:00 h (p=0.170 
and p=0.091, respectively). 

Comparison of relative melatonin changes, based on 
melatonin concentration at 03:00 h, between the nap and no 
nap conditions was also conducted (Fig. 2F). Repeat-
ed-measures ANOVA with condition (nap and no nap) and 
time (05:00 ~ 09:00 h) showed a main effect in time (F2, 

16=8.935, p<0.001) but not in condition (F1, 8=2.678, 
p=0.140). A significant interaction between condition and 
time was found (F2, 16=5.489, p=0.015). A paired t-test for 
melatonin concentrations at each time point showed that 
melatonin level at 05:00 h (i.e., soon after the nap interven-
tion) was significantly greater in nap condition than in no 
nap condition (p=0.026). However, there were no signifi-
cant differences in melatonin concentrations between nap 
and no nap conditions at 07:00 and 09:00 h (p=0.972 and 
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Fig. 3. Comparison of melatonin AUC between the baseline day and the simulated night work day (A: nap condition, B: no nap 
condition). Comparison of melatonin AUC suppression (%) between nap and no nap conditions (C). **: p<0.01, *:p<0.05
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Fig. 3. Comparison of melatonin AUC between the baseline day and the simulated night work day (A: 
nap condition, B: no nap condition). Comparison of melatonin AUC suppression (%) between nap and 
no nap conditions (C). **: p < 0.01, *:p < 0.05



of lapses was significantly smaller in the nap condition than 
in the no nap condition at 07:00 h (p=0.046). There were no 
significant differences in the numbers of lapses between the 
conditions at 03:00 and 09:00 h.

SSS
The results for subjective sleepiness are shown in Fig. 5. 

There was a significant main effect of condition (nap vs. no 
nap; F1, 8=9.729, p=0.014), but there was no main effect of 
time (03:00 ~ 09:00 h, F3, 24=1.405, p=0.266). There was a 
significant interaction between condition and time 
(F3, 24=18.600, p<0.001).

In the comparison of levels of sleepiness between the 
nap and no nap conditions at each time point (paired t-test), 
the level of sleepiness was significantly higher in the nap 
condition than in the no nap condition at 05:00 h (p=0.008). 
However, the levels of sleepiness were significantly lower 
in the nap condition than in the no nap condition at 07:00 
and 09:00 h (p=0.001 and p=0.002, respectively). 

Discussion

The effects of nighttime naps on sleepiness and perfor-
mance during night shift work have been established in 
many previous studies15, 19–21). In the present study, we also 
investigated the effect of blocking light during napping on 
melatonin recovery. Not surprisingly, the simulated night 
work without a nap break (i.e., constant light exposure con-
dition) continuously inhibited pineal melatonin synthesis 
until the end of the experiment (Fig. 2B). In contrast, mela-
tonin levels were recovered from light-induced suppression 
immediately after the 2-h nap break (Figs. 2A and 2F). 
However, in the result of direct comparison of melatonin 
between the nap and no nap conditions (Fig. 2E), there was 
no significant difference at 05:00 h, immediately after the 

time point (paired t-test), there were no significant differ-
ences between the conditions. However, the response speed 
in the nap break tended to be slower than that in the no nap 
condition at 05:00 h (p=0.085) and tended to be faster than 
that in the no nap condition at 07:00 and 09:00 h (p=0.058 
and p=0.090, respectively).

The paired t-test for mean 10% fastest RT (optimal alert-
ness) at each time point showed that optimal alertness was 
significantly worse in the nap condition than in the no nap 
condition at 05:00 h (p=0.047) but was significantly better 
at 07:00 h (p=0.020). There was also a significant tendency 
for better optimal alertness in the nap condition than in the 
no nap condition at 09:00 h (p=0.087).

A comparison of the numbers of lapses between the con-
ditions at each time point (Wilcoxon signed-rank test) 
showed that the number of lapses was significantly greater 
in the nap condition than in the no nap condition at 05:00 h 
(p=0.041 and p=0.046, respectively). However, the number 
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Fig. 4. Comparison of PVT performance including 1/RT (A), fastest 10% RT (B), and number of lapses (C) between the nap and no 
nap conditions. *:p<0.05
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Fig. 4. Comparison of PVT performance including 1/RT (A), fastest 10% RT (B), and number of lapses (C) between 
the nap and no nap conditions. *:p < 0.05

Fig. 5. Comparison of subjective sleepiness (SSS) between the 
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than that in the no nap condition (Fig. 3). These results are 
thought to be partially related to the fact that the pineal 
gland does not store melatonin. Once melatonin is synthe-
sized, it rapidly reaches all cellular tissues via capillaries 
and is degraded in the liver24). Another possible reason is 
that the nap break in a dark room resulted in recovery of 
retinal photosensitivity, which sensitized pineal melatonin 
to the light exposure during the simulated night work. Dark 
adaptation can result in complete recovery of bleached 
photopigments in the retina within an hour and increase the 
gain of the phototransduction cascade25). Furthermore, it 
has recently been reported that mRGC also has an ability of 
dark adaptation26). Jasser et al. demonstrated that 2-h dark 
adaptation can amplify light-induced melatonin suppres-
sion27). We also found that even a 10-min break in a nearly 
dark room (<1 lx) can promote melatonin suppression in 
response to a subsequent light stimulus28). 

Consistent with the results of previous studies14, 21), the 
nighttime nap break was found to promote subjective and 
objective alertness. Overall, the simulated night shift work 
without a nap break increased subjective sleepiness and de-
creased PVT performance over time (Figs. 3 and 4). How-
ever, compared to those results, the subjective sleepiness 
ratings were decreased after the nap break. The values rep-
resenting optimal alertness (i.e., fastest 10% RT) were im-
proved; the response speeds (i.e., 1/RT) tended to be faster 
after the nap break. Also, the number of PVT lapses was 
decreased after the nap break. 

Nonetheless, we also found some adverse effects of nap 
breaks on subjective sleepiness and PVT performance. The 
participants showed performance decrement shortly after 
the 2-h nap break: compared to the results at 05:00 h in the 
no nap condition, the level of subjective sleepiness was 
higher, the fastest 10% RT was slower, and the number of 
PVT lapses was larger in the nap condition. These results 
might be caused by early assessment timing in which the 
participant performed PVT and self-rating sleepiness ap-
proximately 10 min after waking from the nap break. How-
ever, it has been reported that awakening at the circadian 
nadir or in a deep sleep state can lead to severe sleep iner-
tia, a state of impaired cognitive and vigilance performance, 
occurring immediately after awakening from a nighttime 
nap29). Sleep deprivation can also generate sleep inertia 
since it can increase the amount of slow-wave sleep in 
naps30). In the present study, the participants were awak-
ened from the nap break at 05:00 h, generally near the cir-
cadian nadir; they did not take a diurnal nap before the start 
of the experiment. Considering the previous findings, these 
probably accelerated sleep inertia after the nap break. 

nap break. Contrary to our expectation, there was a signifi-
cant difference in melatonin concentration between the nap 
and no nap conditions at 03:00 h, before the nap break. 
Hence, we calculated the percentage changes based on the 
melatonin concentration at 03:00 h in each condition and 
compared them. In the results, the melatonin change in the 
nap condition was found to be significantly greater than 
that in the nap condition at 05:00 h, immediately after the 
nap break (Fig. 2F). It is unclear why the differences in 
melatonin concentration emerged between the nap and no 
nap conditions even before the nap intervention. Unlike in 
the nap conditions, some participants might have relatively 
weak melatonin sensitivity to light in the no nap condition. 
As mentioned above, melatonin concentration could differ 
depending on the circadian rhythm, light exposure history, 
and food intake even in the same individual17, 18). Although 
we controlled the participants’ sleep schedule for one week 
and meal, light exposure, and behavior the day before the 
simulated night work, melatonin secretions were not well 
controlled. In a future study, the secretion rhythm and/or 
amplitude of melatonin need to be tightly controlled to 
assess the effects of nighttime napping on melatonin more 
accurately.

In support of our hypothesis, blocking light during the 
nap break is thought to be responsible for melatonin recov-
ery during the nap break. However, there might also be 
other factors influencing melatonin concentration. For in-
stance, the results of a previous study suggested that mela-
tonin concentration could be directly influenced by sleep22). 
According to that study, melatonin levels were increased 
(approximately 6.7%) during sleep compared to the levels 
during constant wakefulness in a dimly lit room (<10 lx). 
However, exposure to dim light might reduce melatonin 
levels, as the authors discussed in their paper. Also, there is 
a lack of further studies supporting the direct effect of sleep 
on melatonin. Moreover, a recent study has shown mela-
tonin increment during sleep deprivation compared to that 
during sleep in female subjects, results that are inconsistent 
with previous results23). 

The increased melatonin concentration during the nap 
break was, however, rapidly diminished soon after the par-
ticipants returned to the simulated night work, indicating 
that the beneficial effect of the nap break on melatonin is 
temporary. Furthermore, melatonin was excessively sup-
pressed after the nap break more than we expected (Fig. 2). 
Consequently, the melatonin AUC changes (%) were 
almost identical in the nap and no nap conditions; instead, 
although there was no statistically significant difference, 
the AUC change in the nap condition was slightly greater 
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genes40–43). Therefore, it is necessary to verify the reproduc-
ibility of our findings considering the inter-individual dif-
ferences mentioned above.

Interestingly, several previous studies have shown that 
even short sleep contributes to resetting circadian rhythms. 
One previous study showed that taking 4-h sleep regularly 
every day can maintain 24-h period rhythm of body tem-
perature even with another irregular 4-h sleep44). Another 
previous study showed that taking 2-h sleep during night-
time sleep deprivation compensates the endogenous oscil-
lation of core body temperature45). Additionally, in the same 
previous study, sleep for 2 hours contributed to an increase 
in slow-wave sleep and REM sleep. Given that nocturnal 
melatonin secretion or external melatonin administration is 
related to biological regulation46, 47), the melatonin recovery 
during the 2-h nap break might somehow contribute to 
those previous findings. In a future study, the effect of a 2-h 
nap break on circadian phase shift after night shift work 
should be investigated.

Our findings indicate that taking a 2-h nighttime nap can 
temporarily recover melatonin concentration from severe 
suppression caused by light exposure during night work. A 
nap for 2 hours can induce sleep inertia but ultimately en-
hances subjective alertness and vigilance performance. The 
increase in melatonin during the nap break may imply the 
importance of melatonin secretion during the biological 
night again. However, the results in this study suggest a 
possibility that a nighttime nap in darkness might promote 
melatonin suppression on the following night work by in-
creasing retinal sensitivity to light, which could lead to 
even worse results in the total amount of melatonin secre-
tion. For now, it is difficult to conclude that nighttime nap-
ping for 2 hours can mitigate melatonin suppression during 
night shift work. However, it is expected that nighttime 
napping can provide beneficial effects on melatonin during 
night work if the increase in retinal photosensitivity by nap-
ping in darkness could be attenuated.

Although we examined the effects of a nap for 2 hours in 
a laboratory setting, most workplaces with night shift work 
do not allow their employees to take a nap during the night 
shifts. Even when a nap opportunity was allowed, the nec-
essary number of staff has to be assigned to meet the task 
demand. Given recent increases in the night shift longer 
than 8 hours, such as 12 or 16 hours, it is recommended to 
take a planned nap for 2 hours during the night shifts to 
reduce health and safety risks48).

In previous studies, it was shown that sleep inertia in the 
morning could be reduced by using a dawn simulation, a 
technique mimicking sunrise by gradually increasing illu-
minance from dim light before waking from sleep31, 32). 
From these findings, it is expected that the symptom of 
sleep inertia after a nap break could be improved using ar-
tificial dawn simulation during the nap break. Moreover, 
given that external photic stimuli can reach the retina via 
the eyelid33), the increase in melatonin sensitivity could be 
restrained by conducting a dawn simulation during a nap 
break. If so, it might be possible to mitigate melatonin sup-
pression following a nap break.

There are some limitations in the present study. It is un-
clear how much or how fast melatonin recovered during the 
2-h nap break because we measured melatonin concentra-
tion at 2-hour intervals. Although melatonin levels can be 
altered by recent light exposure history17) and food intake18), 
we did not strictly control those factors. We did not assess 
the participants’ sleep propensity during the 2-h nap break, 
including sleep latency, duration, and depth. The actual nap 
duration is usually shorter than the permitted nap duration, 
and it varies among individuals34). Nap duration might not 
directly influence melatonin recovery, but it could affect the 
results of subjective or objective alertness. The nap break 
was taken between 03:00 and 05:00 h regardless of individ-
ual differences in biological rhythm and chronotype. There-
fore, the length and timing of the nap break might have 
been inappropriate for some participants. 

It has been reported that the postural position can affect 
melatonin concentration. Some previous studies revealed 
that plasma and salivary melatonin concentrations are in-
creased by changing the posture from the supine position to 
the standing position and are decreased by changing the 
posture reversely35, 36). This phenomenon probably occurred 
when the participants took a nap break or awakened from 
the nap in the present study. Considering those previous 
reports, the effect of the 2-h nap break on melatonin might 
have been underestimated in the present study.

The sample size might be small to generalize the results. 
All participants in this study were healthy young male 
adults. However, melatonin levels could decline with 
aging37). Several previous studies showed consistent results 
in which women exhibit significantly higher melatonin 
concentration than men38, 39). The magnitude of melatonin 
recovery during the nap break might be dependent on 
age-related and sex-related differences in melatonin levels. 
Moreover, it has also been known that the pineal melatonin 
sensitivity to light could differ depending on ages, crystal-
line lens transmittance, and genetic variations in the clock 
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